
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Xie, X., Chen, T. Y., Kuo, F. C. & Xu, B.
Title: A theoretical analysis of the risk evaluation

formulas for spectrum-based fault localization
Article number: 31
Year: 2013
Journal: ACM Transactions on Software Engineering and

Methodology
Volume: 22
Issue: 4
URL: http://doi.org/10.1145/2522920.2522924

Copyright: Copyright © 2013 ACM.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://dl.acm.org/

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

A

A Theoretical Analysis of the Risk Evaluation Formulas for
Spectrum-Based Fault Localization

XIAOYUAN XIE, Swinburne University of Technology

TSONG YUEH CHEN, Swinburne University of Technology

FEI-CHING KUO, Swinburne University of Technology

BAOWEN XU, Nanjing University

An important research area of spectrum-based fault localization (SBFL) is the effectiveness of risk evaluation
formulas. Most previous studies have adopted an empirical approach, which can hardly be considered as
sufficiently comprehensive because of the huge number of combinations of various factors in SBFL. Though
some studies aimed at overcoming the limitations of the empirical approach, none of them has provided
a completely satisfactory solution. Therefore, we provide a theoretical investigation on the effectiveness
of risk evaluation formulas. We define two types of relations between formulas, namely, equivalent and
better. To identify the relations between formulas, we develop an innovative framework for the theoretical
investigation. Our framework is based on the concept that the determinant for the effectiveness of a formula
is the number of statements with risk values higher than the risk value of the faulty statement. We group
all program statements into three disjoint sets with risk values higher than, equal to and lower than the
risk value of the faulty statement, respectively. For different formulas, the sizes of their sets are compared
using the notion of subset. We use this framework to identify the maximal formulas which should be the
only formulas to be used in SBFL.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Verification

Additional Key Words and Phrases: Debugging, risk evaluation formulas, spectrum-based fault localization,
testing

1. INTRODUCTION

It is commonly recognized that testing and debugging are important but resource con-
suming activities in software engineering. Attempts to reduce the number of faults in
software are estimated to consume 50% to 80% of the total development and main-
tenance effort [Collofello and Woodfield 1989]. Fault localization is one of the most
essential activities. Due to a great amount of manual involvement, fault localization is
a very resource consuming task in the whole software development life cycle. Therefore
many researchers have proposed various automatic and effective techniques for fault
localization, in order to decrease its cost, as well as to increase the software quality.

One promising approach towards fault localization is Spectrum-Based Fault Local-
ization (referred to as SBFL in this paper). Generally speaking, this approach tries to
locate the suspicious parts in program by utilizing various program spectra acquired

This work is partially supported by an ARC Discovery Project (DP120104773) and the National Natural
Science Foundation of China (90818027, 61170071).
Author’s addresses: Xiaoyuan Xie, Tsong Yueh Chen and Fei-Ching Kuo, Faculty of Information and Com-
munication Technologies, Swinburne University of Technology; Baowen Xu, State Key Laboratory for Novel
Software Technology & Department of Computer Science and Technology, Nanjing University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 X. Xie et al.

dynamically from software testing, and the associated testing result of failed or passed,
for each test case. The program spectrum can be any granularity of program entities
[Reps et al. 1997; Harrold et al. 1998]. For example, one of the most widely adopted
spectra is the execution slice [Agrawal et al. 1995; Wong and Qi 2006]. After collecting
all the necessary information, SBFL uses different formulas to evaluate the risk of
having a fault for each program entity, and gives a risk ranking list. SBFL intends to
highlight program entities which strongly correlate with program failures, and these
entities are regarded as the likely faulty locations [Abreu et al. 2007].

SBFL has received a lot of attention due to its simplicity and effectiveness. One pop-
ular research area is on the effectiveness of various risk evaluation formulas that are
also known as the suspiciousness metrics. Currently, most of the related studies are
empirical investigations [Jones and Harrold 2005; Abreu et al. 2006; 2007; Wong et al.
2007; Abreu et al. 2009], in which various approaches have been applied to control
the threats to validity (e.g. using the established experimental set-up and benchmark,
Siemens Suite [SIR 2005]), in order to provide a fair evaluation and comparison. How-
ever, the performance results of risk evaluation formulas in SBFL are strongly de-
pendent on the experimental set-up. No matter how well the researchers standardize
their experimental set-up or vary the set-up choices, their investigation could never
be considered as sufficiently comprehensive because of the huge number of possible
combinations of various factors. In other words, the representative set-up choices are
still not comprehensive enough to provide a fair evaluation of the investigated SBFL
technique. In summary, despite of all the above attempts, the problems and limitations
of the experimental study still remain.

Therefore, some researchers have conducted theoretical analyses on the effective-
ness of the risk evaluation formulas. Lee et al. [2009a] have first proved that formulas
Tarantula and qe are equivalent. In their follow-up study, a more comprehensive in-
vestigation was conducted, where more groups of equivalent risk evaluation formulas
have been proved [Naish et al. 2011]. However, the type of equivalence used in both
Lee et al. [2009a] and Naish et al. [2011] is the most strict type of equivalence, which
requires identical ranking lists for equivalent formulas. In the study by Naish et al.
[2011], a model program was used to simulate a single-fault program, and the aver-
age performance over all possible multisets of execution paths was used to measure
the performance of a formula. They have proposed two optimal risk evaluation formu-
las, with respect to their model and performance measurement. However, their perfor-
mance measurement is not the measurement commonly used by the SBFL community.
Thus, it is worthwhile to investigate whether their proposed formulas still remain op-
timal with respect to the commonly used measurement.

The contributions of this paper can be summarized as follows, while their impact
and significance would be discussed in Section 7.

1. It is well-known that rather than the absolute risk value, the ranking of the faulty
statement is the determinant of the performance for a risk evaluation formula. To
identify whether a formula is equivalent to or better than another formula, we de-
velop an innovative theoretical framework, which compares the numbers of state-
ments with risk values higher than the risk value of the faulty statements among
different formulas using the notion of subset. Our framework has provided an inno-
vative approach towards theoretical comparison of risk evaluation formulas.

2. Using this framework, we investigate 30 SBFL risk evaluation formulas, and are
able to find five out of these 30 formulas as maximal formulas, under the single-fault
scenario. Naish et al.’s optimal formulas are found to be two of these five maximal
formulas.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:3

The rest of this paper is organized as follows. Section 2 provides background in-
formation about SBFL. Section 3 introduces the intuition of our theoretical analysis
and presents our innovative approach of grouping the statements into three mutu-
ally exclusive sets, based on which we develop all the definitions and theorems in our
approach. Section 4 investigates 30 risk evaluation formulas, and identifies five maxi-
mal formulas. Section 5 provides a review of previous empirical studies, and compares
these empirical results with our theoretical results. Section 6 discusses the assump-
tions used in this study, covering their justifications, impacts as well as limitations,
and elaborates the validity of our results. And finally, Section 7 gives the conclusions
for this paper.

2. BACKGROUND

2.1. Spectrum-based fault localization (SBFL)

SBFL is a dynamic approach and basically utilizes two types of information collected
during software testing, namely testing results and program spectrum. The testing
result associated with each test case records whether a test case is failed or passed.
While a program spectrum is a collection of data that provides a specific view on the
dynamic behaviour of software [Reps et al. 1997; Harrold et al. 1998]. Generally speak-
ing, it records the run-time profiles about various program entities for a specific test
suite. The program entities could be statements, branches, paths, basic blocks, etc.;
while the run-time profile could be the binary coverage status, the number of times
that the entity has been covered, and the program state before and after executing the
program entity, etc. In practice, there are many kinds of combinations [Harrold et al.
1998; Harrold et al. 2000]. The most widely adopted combination involves statement
and its binary coverage status in a test execution, which is effectively the execution
slice [Agrawal et al. 1995; Wong and Qi 2006]. In this paper, we will also follow the
common practice to use the execution slice.

Given a program PG=<s1, s2, ..., sn> with n statements and executed by a test suite
of m test cases TS={t1, t2, ..., tm}, Figure 1 shows the essential information required by
SBFL. Matrix MS represents the program spectrum and RE records the testing results
of all test cases, in which p indicates pass and f indicates fail. The element in the ith

row and jth column of matrix MS represents the coverage information of statement si,
by test case tj , with 1 indicating si is executed, and 0 otherwise.

For each statement si, these data can be represented as a vector of four elements,
denoted as Ai=<aief , a

i
ep, a

i
nf , a

i
np>, where aief and aiep represent the number of test

cases in TS that execute statement si and return the testing result of fail or pass,
respectively; ainf and ainp denote the number of test cases that do not execute si, and

return the testing result of fail or pass, respectively. Obviously, the sum of these four
parameters for each statement should always be equal to the size of the test suite. An
example is shown in Figure 2.

In Figure 2, program PG has four statements {s1, s2, s3, s4}, and test suite TS has six
test cases {t1, t2, t3, t4, t5, t6}. t5 and t6 give rise to failed runs and the remaining four
test cases give rise to passed runs, as indicated in RE. Matrix MS records the binary
coverage information for each statement with respect to every test case. Matrix MA
is such defined that its ith row represents the corresponding Ai for si. For instance, in
this figure, a1np=0 for s1 means that no test case in the current test suite gives a testing

result of pass without executing s1; a4ef=2 for s4 represents that s4 is executed by two

test cases which can detect failure.
A risk evaluation formula R is applied on each statement si to assign a real value

that indicates the risk of being faulty for si. For example, the risk evaluation formula

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 X. Xie et al.

Fig. 1. Essential information for SBFL
Fig. 2. An example for SBFL

Tarantula is defined as follows [Jones et al. 2002].

RT (si) =
aief

aief + ainf
/(

aief
aief + ainf

+
aiep

aiep + ainp
)

A statement with higher risk value is interpreted to have a higher possibility to be
faulty, which therefore should be examined with higher priority. Hence, after assigning
the risk values to all statements, the statements are sorted descendingly according to
their risk values. Debugging starts from the top to the bottom of the list. An effective
formula should be able to make the faulty statements as top in the list as possible. For
the performance measurement of the risk evaluation formulas, majority of the SBFL
community used the same measurement or its equivalent, which is the percentage
of the code that needs (or needs not) to be examined before the faulty statement is
examined. Such a measurement is used with the assumption of “perfect bug detection”
that the fault can always be identified once it is examined [Wong et al. 2010]. In the
study of Wong et al. [2010], the percentage of code that needs to be examined before
the faults are identified is referred to as the EXAM score, which will be adopted in our
analysis. Obviously, a lower EXAM score of formula R indicates a better performance.

2.2. Risk evaluation formulas

One of SBFL’s popular research areas is the design of effective risk evaluation formu-
las, aiming at having the faulty statements as high in the risk list as possible. Many
formulas have been proposed for SBFL, which included Tarantula [Jones et al. 2002],
Jaccard [Chen et al. 2002], Ochiai [Abreu et al. 2006], three formulas proposed by
Wong et al. [2007] (which are referred to as Wong1, Wong2 and Wong3, respectively, in
this paper), etc. [Reps et al. 1997; Zeller 2002; Liblit 2004; Liblit et al. 2005; Liu et al.
2006; Wong et al. 2008; Wong et al. 2010]. Generally speaking, different formulas were
developed from different intuitions or designed to serve for different purposes. But no
matter from what intuitions the formulas were derived, they should all comply with
the expectation that statements associated with more failed and less passed testing
results should have higher faulty risks.

With more and more formulas proposed, some people started to compare their per-
formance [Jones and Harrold 2005; Abreu et al. 2006; 2007; Abreu et al. 2009]. In all
these studies, empirical approaches were conducted to investigate and measure the ef-
fectiveness of the risk evaluation formulas. In order to make the experimental results
more reliable, people have used various approaches to control the threats to validity.
For example, they adopted the same performance measurement or its equivalents, the
standardized experimental set-up and the unified benchmarks. In addition, both the
mutation analysis and real case studies were conducted. However, despite of all the
above efforts, the problems and limitations of the experimental study are only allevi-
ated rather than completely solved.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:5

First, for an experimental analysis, the performance of a risk evaluation formula
strongly depends on the experimental set-up. Different combinations of various test
suites, testing objects, faults types, etc., may significantly affect the experimental re-
sults. Even though people have adopted the unified set-up and benchmarks, these em-
pirical studies can hardly be considered as sufficiently comprehensive due to the huge
number of combinations of all the possible variations. Therefore, the experimental re-
sults can only be considered as sampled observations, which are very likely to change
when the set-up is varied. For example, in Abreu et al.’s comparison of four formu-
las, using EXAM score, the Ochiai formula showed improvements ranging from 2.4%
to 10% on average over the Jaccard formula [Abreu et al. 2006]. Obviously, if we are
given a scenario which is very different from their experimental set-up, there is no
way to know whether the observed average range of improvements is still valid for the
given scenario. In other words, we are not able to generalize our observed results from
the experimental analysis.

Secondly, we observed that in many of the experimental results, the differences
among some formulas are actually quite marginal or statistically insignificant. For
instance, Abreu et al. [2006] found that the difference in EXAM scores between the
Ochiai and Jaccard formula can be just 2.4%. Since some of the object programs used
in the experiments are very small in scales, 2.4% sometimes refers to only one state-
ment, which makes the result meaningless in this instance.

Therefore, some researchers have investigated the performance of risk evaluation
formulas from a theoretical perspective. As the first attempt, Lee et al. [2009a] have
proved that formula Tarantula always produces identical ranking list as formula qe,
and hence they are equivalent. This pilot study was followed by a more comprehen-
sive investigation [Naish et al. 2011], where over 30 formulas were studied and more
equivalence relations were identified, using the same definition of equivalence as Lee
et al. [2009a]. Naish et al. [2011] also investigated the non-equivalence relations, using
a hybrid approach, with a model program and a group of multisets of execution paths.
The multiset of execution paths was actually the abstraction of the path coverage in-
formation and the testing results of each concrete test suite, with respect to the model
program.

In their study, for a risk evaluation formula, the performance score with respect to a
multiset of execution paths was 0 if the risk of the faulty statement was less than any
other statement. Otherwise, the score was 1/k, where k denoted the number of state-
ments (including the faulty statement) having equal risk values as the faulty state-
ment. The overall performance of a formula was measured by the total score, which
was the sum (or average) of the scores over all possible distinct multisets of t execution
paths that contain at least one failed test case. Technically speaking, given the num-
ber of test cases t, the total score of a formula can be determined by summing up the
scores over all possible multisets of t execution paths. However, even for the simple
model program, the number of all possible distinct multisets increases dramatically
with the increase of t. Thus, in their study, when the number of possible multisets was
not too large, all the possible multisets were used to evaluate the performance; while
for large numbers of multisets, a random sample of them was used, which was selected
according to a uniform distribution of the combinations of path coverage and testing
results. Hence, their analysis still involved sampling and simulation.

They have proposed two optimal formulas which are equivalent with respect to their
model program and the total score. They also compared the performance among other
non-equivalent formulas using experimental analysis. Besides, empirical analysis was
conducted on the impacts of various factors, including test suite size, error detection
accuracy, the number of failed test cases and the execution frequency of the buggy code.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 X. Xie et al.

However, the studies of Lee et al. [2009a] and Naish et al. [2011] have their limita-
tions. First, they both adopted the most strict type of equivalence that two equivalent
formulas produce identical ranking lists. Intuitively speaking, two formulas should be
regarded as equivalent as long as, for any faulty program and test suite, the rankings
of the same faulty statement in their final ranking lists are identical. Obviously, iden-
tical ranking for all statements is a sufficient condition but not a necessary condition
to have the same rankings for the faulty statement. In other words, some formulas
which are intuitively equivalent would be regarded as non-equivalent according to the
type of equivalence used in the study by Lee et al. [2009a] and Naish et al. [2011].
Hence, their equivalence does not properly reflect the realistic scenarios. Secondly,
though Naish et al. [2011] have provided the optimal formulas for their model and
performance measurement, their optimal formulas may not be optimal with respect to
the most popular performance measurement of EXAM score in SBFL community.

In summary, none of the previous studies has actually provided a definite answer
to the question that which formula is optimal with respect to EXAM score, and hence
should be used when SBFL is applied. This paper uses a theoretical analysis to provide
the answer.

3. OUR FRAMEWORK

As mentioned above, in SBFL, given a program and a test suite, the matrix MA can
be constructed accordingly. A risk evaluation formula R uses MA to assess the risk
of being faulty for all statements, according to which, all statements will be sorted
descendingly into a ranking list. Debugging is then conducted on statements from
top to bottom of the ranking list. Therefore, the relative risk values rather than the
absolute risk values of all statements, are the key factor determining the performance
for a formula R.

In this study, we will use the EXAM score to measure the performance of a formula
R. According to the definition of EXAM score, the higher the faulty statement sf can
be ranked according to R, the lower EXAM score R can be obtained; and a lower EXAM
score indicates a better performance. Given a ranking list in descending order of the
risk values evaluated by a formula R, we can divide the set of all statements (denoted
as S) into three mutually exclusive subsets, SR

B , SR
F and SR

A with respect to an arbitrary
sf , as follows.

Definition 3.1. Given a program with n statements PG=<s1, s2, ..., sn>, a test
suite of m test cases TS={t1, t2, ..., tm}, and a risk evaluation formula R, vector
Ai=<aief , a

i
ep, a

i
nf , a

i
np> can be constructed for each statement si, and R(si) can be

computed accordingly. For any faulty statement sf , the set of program statements
S={s1, s2, ..., sn} can be decomposed into three mutually exclusive subsets:

(a) SR
B consists of all statements with risk values higher than the risk value of the

faulty statement sf , that is, SR
B = {si∈S|R(si)>R(sf), 1≤i≤n}.

(b) SR
F consists of all statements with the risk values equal to the risk value of the

faulty statement sf , that is, SR
F = {si∈S|R(si)=R(sf), 1≤i≤n}.

(c) SR
A consists of all statements with the risk values lower than the risk value of the

faulty statement sf , that is, SR
A = {si∈S|R(si)<R(sf), 1≤i≤n}.

In the practice of SBFL, a tie-breaking scheme is required to determine the order
of the statements with identical risk values, and such a scheme is also required in
our theoretical analysis. In the context of EXAM score, all si∈SR

B are ranked higher
than sf , and all si∈SR

A are ranked lower than sf . Thus, the ordering of the statements
within SR

B or SR
A does not affect the ranking of sf . As a consequence, we need not

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:7

consider the application or impact of tie-breaking scheme on SR
B or SR

A and hence we
are only interested in how a tie-breaking scheme distinguishes and ranks si∈SR

F .
In previous studies, various tie-breaking schemes have been used, including

WORST, BEST, ORIGINAL ORDER, etc. [Wong et al. 2008; Wong et al. 2010; Xie
et al. 2011]. As a theoretical analysis, our framework cannot assume any arbitrary
tie-breaking scheme, because some of them may be unreasonable or counter-intuitive.
Actually, a tie-breaking scheme solves the ordering problem that a risk evaluation for-
mula cannot solve. Thus, when comparing different formulas, it is reasonable to expect
that a tie-breaking scheme returns consistent rankings for all formulas, which is in-
dependent of the risk evaluation formulas. Let us use an example to further illustrate
what are meant by consistent rankings. Suppose that two risk evaluation formulas R1

and R2 return the same SR
F . Then, an identical ordering for statements in SR1

F and

SR2

F would be expected after the application of a tie-breaking scheme. Based on this in-
tuition, an intuitive generalization is that a tie-breaking scheme should preserve the
relative order of any pair of common statements in SR

F returned by different formulas.
We refer such schemes as consistent tie-breaking schemes, which are formally defined
as follows.

Definition 3.2. Given any two statement sets S1 and S2, which contain elements
with the same risk values. A tie-breaking scheme returns the ordered statement lists
O1 and O2 for S1 and S2, respectively. The tie-breaking scheme is said to be consistent,
if all elements common to S1 and S2 have the same relative order in O1 and O2.

Let E1 and E2 denote the EXAM scores for risk evaluation formulas R1 and R2,
respectively. We define two types of relations between R1 and R2 as follows.

Definition 3.3 (Better). R1 is said to be better than R2 (denoted as R1 → R2) if for
any program, faulty statement sf , test suite and consistent tie-breaking scheme, we
have E1≤E2.

It should be noted that the relation “→” is reflexive, that is, we have R1 → R1.
Besides, this relation is transitive, that is, if R1 → R2 and R2 → R3, we have R1 → R3.

Definition 3.4 (Equivalent). R1 and R2 are said to be equivalent (denoted as R1 ↔
R2), if for any program, faulty statement sf , test suite and consistent tie-breaking
scheme, we have E1=E2.

As a reminder, this relation “↔” is reflexive, symmetric and transitive, that is, R1 ↔
R1; if R1 ↔ R2, then R2 ↔ R1; and if R1 ↔ R2 and R2 ↔ R3, then R1 ↔ R3.

In the context of the EXAM score which is the most widely accepted measurement
to compare different risk evaluation formulas, our definition of equivalence is more
general and intuitively appealing than the definition of equivalence used by Lee et al.
[2009a] and Naish et al. [2011]. Following our Definition 3.4, two formulas are equiva-
lent if and only if they have the same number of statements preceding the faulty state-
ment in the ranking lists, that is, they produce the same EXAM score. With respect
to the definition of equivalence used by Lee et al. [2009a] and Naish et al. [2011], two
formulas are equivalent if they produce identical ranking lists for all the statements.
As a consequence, their equivalent formulas always produce the same EXAM score,
and hence their equivalent formulas are also equivalent with respect to our type of
equivalence. In summary, if two formulas are equivalent according to their definition,
these two formulas are also equivalent according to our equivalence in Definition 3.4;
but not vice versa. Thus, their definition is a special case of ours.

Immediately from Definition 3.3 and Definition 3.4, we have the following property.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 X. Xie et al.

THEOREM 3.5. For any two risk evaluation formulas R1 and R2, R1 ↔ R2 if and
only if R1 → R2 and R2 → R1.

Intuitively speaking, the most straightforward approach to compare the EXAM
scores of different formulas is to compare the sizes of their SR

B and the numbers of
statements that are from SR

F but ranked before sf by the tie-breaking scheme. For in-
stance, in the above example that two risk evaluation formulas R1 and R2 return the
same SR

F , suppose that the size of SR1

B of R1 is smaller than the size of SR2

B of R2. Then,
R1 would have a lower EXAM score. However, since the sizes of SR

B and SR
F depend

on the program and test suite, which can be very varying, a size comparison appears
to be mathematically intractable. One of the innovative contributions in our study is
to make use of the subset relationships among SR

B (or SR
F) of different formulas, to

facilitate the analysis. It turns out that the use of the notion of subset is sufficient to
identify the maximal risk evaluation formulas. In fact, we have the following sufficient
condition for R1 → R2 involving the notion of subset, which plays an important role in
identifying the maximal risk evaluation formulas.

THEOREM 3.6. Given any two risk evaluation formulas R1 and R2, if for any pro-

gram, faulty statement sf and test suite, we have SR1

B ⊆SR2

B and SR2

A ⊆SR1

A , then R1 → R2.

PROOF. Consider a formula R3, such that for any program, sf and test suite,

SR3

B =SR1

B and SR3

A =SR2

A . Let E3 denote the EXAM score of R3, and let L1, L2 and L3

denote the ranking lists returned by R1, R2 and R3, respectively. For R1 and R3, we
have SR3

B =SR1

B , SR1

F ⊆SR3

F and SR3

A ⊆SR1

A . If the tie-breaking scheme is consistent, sf can
never have lower ranking in L1 than in L3. Therefore, we have E1≤E3. Now, consider-
ing R2 and R3, we have SR3

B ⊆SR2

B , SR2

F ⊆SR3

F and SR3

A =SR2

A . If the tie-breaking scheme

is consistent, sf always has the same relative order with any element of SR2

F , in both

L2 and L3. However, all elements in SR3

F \SR2

F will definitely be ranked higher than sf
in L2, but not necessarily be ranked higher than sf in L3. As a consequence, E3≤E2.

Therefore, we have E1≤E2. Following immediately from Definition 3.3, we have
R1 → R2.

With Theorems 3.5 and 3.6, we can now establish a sufficient condition for R1 ↔ R2.

THEOREM 3.7. Given any two risk evaluation formulas R1 and R2, if for any pro-

gram, faulty statement sf and test suite, we have SR1

B =SR2

B , SR1

F =SR2

F and SR1

A =SR2

A ,
then R1 ↔ R2.

PROOF. Suppose that for any program, sf and test suite, we have SR1

B =SR2

B and

SR1

A =SR2

A . In other words, we have SR1

B ⊆SR2

B and SR2

A ⊆SR1

A , as well as SR2

B ⊆SR1

B and

SR1

A ⊆SR2

A . It follows immediately from Theorem 3.6 that R1 → R2 and R2 → R1. There-
fore, we have R1 ↔ R2 after Theorem 3.5.

4. EFFECTIVENESS OF RISK EVALUATION FORMULAS

In this section, we are going to compare the effectiveness of risk evaluation formulas,
using the framework developed in previous section.

4.1. Investigated formulas

In this study, we investigate 30 risk evaluation formulas, which are selected from
Naish et al. [2011], because their theoretical investigation is the most comprehen-
sive one. These formulas are listed in Table I. Some of their formulas are excluded in
our investigation, because they require specific constraints to make them totally de-
fined, which however are not intuitively justified in the context of SBFL. For example,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:9

formula M1 in [Naish et al. 2011] is defined as
aef+anp

anf+aep
. In M1, all statements with

ainf+aiep=0 would then have undefined risk values. However, there is no intuition to

justify why we need to have the constraint of ainf+aiep 6=0.
Besides, since some formulas are not originally designed for SBFL, they may require

modifications prior to their applications in SBFL. For example, the original form of for-
mula AMPLE2 defined in Table I is | aef

aef+anf
− aep

aep+anp
|, which was originally proposed

to identify faulty classes in object-oriented software, with the assumption that there
is exactly one failing run [Dallmeier et al. 2005]. Since this original form always re-
turns an absolute value, the magnitude order of the computed signed values may be
changed. Therefore, the original form does not comply with the intuition of risk eval-
uation in the context of SBFL that statements associated with more failed and less
passed testing results should have higher faulty risks. Therefore, when applying this
formula to SBFL, we follow Naish et al. [2011] to use its variant defined in Table I.

Table I: Investigated formulas

Name Formula expression

ER1

Naish1

[Naish et al. 2011]











−1 if aef<F

P − aep if aef=F

Naish2

[Naish et al. 2011]

aef − aep

aep+anp+1

ER2

Jaccard

[Chen et al. 2002]

aef

aef+anf+aep

Anderberg

[Naish et al. 2011]

aef

aef+2(anf+aep)

Sørensen-Dice

[Naish et al. 2011]

2aef

2aef+anf+aep

Dice

[Naish et al. 2011]

2aef

aef+anf+aep

Goodman

[Naish et al. 2011]

2aef−anf−aep

2aef+anf+aep

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 X. Xie et al.

Table I: Investigated formulas (cont.)

Name Formula expression

ER3

Tarantula

[Jones et al. 2002]

aef

aef+anf
/(

aef

aef+anf
+

aep

aep+anp
)

qe

[Lee et al. 2009a]

aef

aef+aep

CBI Inc.

[Liblit et al. 2005]

aef

aef+aep
− aef+anf

aef+anf+aep+anp

ER4

Wong2

[Wong et al. 2007]

aef − aep

Hamann

[Naish et al. 2011]

aef+anp−anf−aep

aef+anf+aep+anp

Simple Matching

[Naish et al. 2011]

aef+anp

aef+anf+aep+anp

Sokal

[Naish et al. 2011]

2(aef+anp)
2(aef+anp)+anf+aep

Rogers&Tanimoto

[Naish et al. 2011]

aef+anp

aef+anp+2(anf+aep)

Hamming etc.

[Naish et al. 2011]

aef + anp

Euclid

[Naish et al. 2011]

√
aef + anp

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:11

Table I: Investigated formulas (cont.)

Name Formula expression

ER5

Wong1

[Wong et al. 2007]

aef

Russel & Rao

[Naish et al. 2011]

aef

aef+anf+aep+anp

Binary

[Naish et al. 2011]











0 if aef<F

1 if aef=F

ER6

Scott

[Naish et al. 2011]

4aefanp−4anfaep−(anf−aep)
2

(2aef+anf+aep)(2anp+anf+aep)

Rogot1

[Naish et al. 2011]

1
2 (

aef

2aef+anf+aep
+

anp

2anp+anf+aep
)

Kulczynski2

[Naish et al. 2011]

1
2 (

aef

aef+anf
+

aef

aef+aep
)

Ochiai

[Abreu et al. 2006]

aef√
(aef+anf)(aef+aep)

M2

[Naish et al. 2011]

aef

aef+anp+2(anf+aep)

AMPLE2

[Naish et al. 2011]

aef

aef+anf
− aep

aep+anp

Wong3

[Wong et al. 2007]

aef−h,where h=



























aep if aep≤2

2+0.1(aep−2) if 2<aep≤10

2.8+0.001(aep−10) if aep>10

Arithmetic Mean

[Naish et al. 2011]

2aefanp−2anfaep

(aef+aep)(anp+anf)+(aef+anf)(aep+anp)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 X. Xie et al.

Table I: Investigated formulas (cont.)

Name Formula expression

Cohen

[Naish et al. 2011]

2aefanp−2anfaep

(aef+aep)(anp+aep)+(aef+anf)(anf+anp)

Fleiss

[Naish et al. 2011]

4aefanp−4anfaep−(anf−aep)
2

(2aef+anf+aep)+(2anp+anf+aep)

4.2. Assumptions

Before presenting our performance analysis of the selected formulas, we first list our
assumptions. In Section 6, we will provide a detailed discussion of these assumptions.

1. We assume that the SBFL techniques are applied to programs with testing oracle.
In other words, for any test case, the testing result of either fail or pass, can be
decided. This assumption is adopted in all previous studies, except our recent work
[Xie et al. 2011].

2. We assume that debuggers examine the statements one by one from the top to
the bottom of the ranking list returned by SBFL, and once the faulty statement
is examined, the fault can always be identified. This is also known as “perfect bug
detection”, which is adopted by most of the previous SBFL studies [Wong et al.
2010].

3. We assume that the faults are the deterministic faults, that is, a test case will
always yield the same testing result of either fail or pass. This type of faults is
not affected by any run-time environment, and is also assumed in the majority of
previous SBFL studies. Moreover, we will exclude the omission faults.

4. The test suite is assumed to have 100% statement coverage, that is, for any si, we
have aief + aiep>0. Also assumed is that the test suite contains at least one passed

test case and one failed test case, that is, for any si, we have aiep + ainp>0 and

aief + ainf>0.

4.3. Maximal risk evaluation formulas

In this section, five out of the 30 investigated formulas would be identified as the most
efficient formulas (known as the maximal formulas), under the single-fault scenario.
This section consists of three subsections. Section 4.3.1 will first define some notations
and give some lemmas, which would be used to identify the equivalent groups of for-
mulas and the relations between non-equivalent formulas in Sections 4.3.2 and 4.3.3,
respectively.

4.3.1. Preliminary. Generally speaking, in a partially ordered set (S,>), an element a
is said to be maximal if for any element b∈S, whenever b>a, b is a. In our context, a
risk evaluation formula R1 is said to be a maximal formula of a set of formulas, if for
any element R2 of this set of formulas, R2 → R1 implies R2 ↔ R1. We use “R2 ↔ R1”
instead of “R2 is R1” because EXAM score is our sole measurement to distinguish the
performance between different formulas and different formulas may have the same
EXAM score.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:13

Given a test suite TS, we denote its size as T , the number of failed test cases as
F and the number of passed cases as P . Obviously, we have 1≤F<T , 1≤P<T , and
P+F=T . And we have the following lemmas of which the proofs are immediate after
the definitions and the above assumptions.

LEMMA 4.1. For any Ai=<aief , a
i
ep, a

i
nf , a

i
np>, we have aief+aiep>0, aief+ainf=F ,

aiep+ainp=P , aief≤F and aiep≤P .

LEMMA 4.2. For any faulty statement sf with Af=<afef , a
f
ep, a

f
nf , a

f
np>, if sf is the

only faulty statement in the program, we have afef=F and afnf=0.

4.3.2. Equivalent groups of formulas. We have identified six equivalent groups among all
the 30 investigated formulas, as follows.

PROPOSITION 4.3. Amongst all the investigated formulas as stated in Table I, there
are six groups of equivalent formulas, which are defined and referred to as “ER1” to
“ER6”, as follows.

— ER1 consists of Naish1 and Naish2.

— ER2 consists of Jaccard, Anderberg, Sørensen-Dice, Dice and Goodman.

— ER3 consists of Tarantula, qe and CBI Inc.

— ER4 consists of Wong2, Hamann, Simple Matching, Sokal, Rogers & Tanimoto,
Hamming etc., and Euclid.

— ER5 consists of Wong1, Russell & Rao and Binary.

— ER6 consists of Scott and Rogot1.

PROOF. These six equivalent groups of formulas are identical to the six groups iden-
tified by Naish et al. [2011] with respect to their definition of equivalence. As explained
after the presentation of Definition 3.4, the equivalence of Naish et al. [2011] is a spe-
cial case of ours. Therefore, it follows immediately that ER1 to ER6 are equivalent
groups.

Intuitively speaking, R1 ↔ R2 does not necessarily imply that R1 and R2 are equiva-
lent with respect to Naish et al.’s type of equivalence. However, amongst the 30 inves-
tigated formulas, there does not exist any pair of distinct R1 and R2 such that R1 ↔ R2

and they are not equivalent with respect to Naish et al.’s type of equivalence. There-
fore, we provide the following example to demonstrate that our equivalence is more
general than that of Naish et al. [2011].

Example 4.4. Consider a risk evaluation formula re defined as follows.

re =











− aep

aef
if aef>0

−P
F
−1 if aef=0

Though re is artificially constructed, it is an intuitively appealing risk evaluation
formula because of the following reasons.

— For si with aief>0, re complies with the general expectation as other widely adopted
formulas, that statements associated with more failed and less passed testing re-
sults should have higher risk values.

— For si with aief=0, re assigns risk value of (−P
F
−1) to them. Since F≥1 and afep≤P

after Lemma 4.1, we have −af
ep

F
≥−P

F
>(−P

F
−1). Therefore, the risk value of si with

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 X. Xie et al.

aief=0, which is (−P
F
−1), is always lower than the risk value of sf , which is −af

ep

F
.

This also complies with the general expectation that under the single-fault scenario,
a statement si with aief=0 can never be the faulty statement [Xie et al. 2010].

We are going to show that our equivalence is more general than Naish et al.’s equiv-
alence [Naish et al. 2011], through the proof that re ↔ Tarantula and that re and
Tarantula are not equivalent with respect to Naish et al.’s equivalence.

(A) To prove that re ↔ Tarantula.
Our approach of proof is to show that SR

B , SB
F and SR

A for both Tarantula and re are
equal to the following sets XR, Y R and ZR, respectively.

XR={si|aief>0 and
afep
F

−aiep
aief

>0, 1≤i≤n} (4.1)

Y R={si|aief>0 and
afep
F

−aiep
aief

=0, 1≤i≤n} (4.2)

ZR={si|(aief = 0) or (aief>0 and
afep
F

−aiep
aief

<0), 1≤i≤n}=S\(XR∪Y R) (4.3)

First, after Lemma 4.2 and Definition 3.1, for re, we have

SRE
B ={si|(aief>0 and −aiep

aief
>−afep

F
) or (aief=0 and −P

F
−1>−afep

F
), 1≤i≤n}

SRE
B can be re-written as

SRE
B ={si|aief>0 and −aiep

aief
>−afep

F
, 1≤i≤n}∪{si|aief=0 and −P

F
−1>−afep

F
, 1≤i≤n}

Assume (−P
F
−1)>−af

ep

F
. Then, we have

af
ep

F
>(P

F
+1). Therefore, afep>P , which

is a contradiction to Lemma 4.1. Thus, {si|aief=0 and −P
F
−1>−af

ep

F
, 1≤i≤n}=∅.

Then, SRE
B ={si|aief>0 and − ai

ep

ai
ef

>−af
ep

F
, 1≤i≤n}, which can be re-written as {si|aief>0

and
af
ep

F
− ai

ep

ai
ef

>0, 1≤i≤n}=XR in (4.1).

Next, after Lemma 4.2 and Definition 3.1, we have

SRE
F ={si|(aief>0 and −aiep

aief
=−afep

F
) or (aief=0 and −P

F
−1=−afep

F
), 1≤i≤n}

Similarly, we can prove that SRE
F is equal to Y R defined in (4.2). Then, it follows im-

mediately that SRE
A =S\(XR∪Y R)=ZR.

Now let us consider Tarantula. As stated in Table I, formula Tarantula is defined as
follows.

RT (si) =
aief

aief + ainf
/(

aief
aief + ainf

+
aiep

aiep + ainp
)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:15

It follows from Lemma 4.1 and 4.2 that RT (si)=
ai
ef

F
/(

ai
ef

F
+

ai
ep

P
) and RT (sf)=1/(1+

af
ep

P
).

Then, after Definition 3.1, we have

ST
B = {si|

aief
F

/(
aief
F

+
aiep
P

)>1/(1+
afep
P

), 1≤i≤n}

Now, we are going to prove ST
B=XR. For any si, we have either (aief=0) or (aief>0).

Therefore, ST
B can be re-written as

ST
B={si|aief=0 and

aief
F

/(
aief
F

+
aiep
P

)>1/(1+
afep
P

), 1≤i≤n}

∪{si|aief>0 and
aief
F

/(
aief
F

+
aiep
P

)>1/(1+
afep
P

), 1≤i≤n}

Consider the case that (aief=0). Since (1+
af
ep

P
)>0 after Lemma 4.1, we have

ai
ef

F
/(

ai
ef

F
+

ai
ep

P
)=0<1/(1+

af
ep

P
), which is contradictory to

ai
ef

F
/(

ai
ef

F
+

ai
ep

P
)>1/(1+

af
ep

P
).

Thus, {si|aief=0 and
ai
ef

F
/(

ai
ef

F
+

ai
ep

P
)>1/(1+

af
ep

P
), 1≤i≤n}=∅, and hence we have

ST
B={si|aief>0 and

aief
F

/(
aief
F

+
aiep
P

)>1/(1+
afep
P

), 1≤i≤n} (4.4)

— Assume that si∈ST
B. After (4.4), we have (aief>0 and

ai
ef

F
/(

ai
ef

F
+

ai
ep

P
)>1/(1+

af
ep

P
)).

Since aief>0, we have F
ai
ef

>0 because F>0. Then,
ai
ef

F
/(

ai
ef

F
+

ai
ep

P
)>1/(1+

af
ep

P
) implies

1/(1+
ai
ep

P
F
ai
ef

)>1/(1+
af
ep

P
). Furthermore, it follows from F

ai
ef

>0 and Lemma 4.1 that

(1+
ai
ep

P
F
ai
ef

)>0 and (1+
af
ep

P
)>0, then we have

ai
ep

P
F
ai
ef

<
af
ep

P
. Since P

F
>0, after multiply-

ing each side by P
F

and re-arranging the terms, we have
af
ep

F
− ai

ep

ai
ef

>0. Then, we have

si∈XR after (4.1). Therefore, ST
B⊆XR.

— Assume that si∈XR. After (4.1), we have (aief>0 and
af
ep

F
−ai

ep

ai
ef

>0). Since F
P
>0,

after re-arranging the terms and multiplying each side by F
P

,
af
ep

F
− ai

ep

ai
ef

>0

becomes
ai
ep

P
F
ai
ef

<
af
ep

P
which implies F

ai
ef

(
ai
ef

F
+

ai
ep

P
)<(1+

af
ep

P
). Therefore, we have

ai
ef

F
/(

ai
ef

F
+

ai
ep

P
)>1/(1+

af
ep

P
) because aief>0, F>0,

ai
ep

P
>0 and

af
ep

P
>0. Then, we have

si∈ST
B after (4.4). Therefore, XR⊆ST

B.
In summary, we have proved ST

B=XR.

Similarly, we have ST
F={si|a

i
ef

F
/(

ai
ef

F
+

ai
ep

P
)=1/(1+

af
ep

P
), 1≤i≤n}, which can be proved to

be equal to Y R. Then, it follows immediately that ST
A=S\(XR∪Y R)=ZR.

In conclusion, SR
B , SB

F and SR
A for both Tarantula and re are equal to the sets in (4.1),

(4.2) and (4.3), respectively. It follows after Theorem 3.7 that re ↔ Tarantula.

(B) To prove that re and Tarantula are not equivalent with respect to Naish et al.’s
equivalence.
For Tarantula, si with aief=0 will be assigned with the lowest risk value of 0, and hence

is ranked lower than any sj with ajef>0. Consider a test suite with P=6 and F=2. For

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 X. Xie et al.

re, if there exists si such that aief=0, we have RRE(si)=−P
F
−1=−4. Suppose there exists

sj such that ajef=1 and ajep=5. Then, we have RRE(sj)=− aj
ep

a
j

ef

=−5<−4=RRE(si). While

for Tarantula, we have RT (sj)=
3
8>0=RT (si). Therefore, re does not produce the same

ranking list as Tarantula, and hence re and Tarantula are not equivalent with respect
to Naish et al.’s equivalence.

4.3.3. Relations between non-equivalent formulas. With the above six groups of equivalent
formulas, we only need to search the maximal formulas from the following 14 indi-
vidual formulas or groups of equivalent formulas, namely, ER1, ER2, ER3, ER4, ER5,
ER6, Kulczynski2, Ochiai, M2, AMPLE2, Wong3, Arithmetic Mean, Cohen and Fleiss.
Among them, some constitute certain performance hierarchy chains, which are pre-
sented in Figure 3.

(a) (b)

Fig. 3. Performance hierarchy chains of risk evaluation formulas

In Figure 3, each node represents a formula, or an equivalent group of formulas. The
arrow from node N1 to node N2 means that for any formulas R1 and R2 in N1 and N2,
respectively, R1 → R2. Obviously, since the relation “→” is transitive, for any formulas
Ri and Rj in Ni and Nj, respectively, we have Ri → Rj , as long as Nj is a direct or
indirect descendant node of Nj in the corresponding chain.

First, let us consider Figure 3(a), which involves equivalent groups ER3, ER4 and
ER2, as well as formulas Ochiai and Kulczynski2. Proposition 4.6, Proposition 4.7,
Proposition 4.10 and Proposition 4.11 establish this figure. Before presenting the proof
for ER2 → ER3, we need the following lemma for Jaccard of ER2.

LEMMA 4.5. For Jaccard, we have SJ
B=XJ and SJ

A=ZJ , where

XJ={si|aief > 0 and 1 +
afep
F

− F

aief
− aiep

aief
> 0, 1≤i≤n} (4.5)

ZJ={si|(aief = 0) or (aief > 0 and 1 +
afep
F

− F

aief
−

aiep
aief

< 0), 1≤i≤n} (4.6)

PROOF. As stated in Table I, formula Jaccard is defined as follows.

RJ(si) =
aief

aief + ainf + aiep

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:17

It follows from Lemma 4.1 and Lemma 4.2 that RJ (si)=
ai
ef

F+ai
ep

and RJ(sf)=
F

F+a
f
ep

.

Then, after Definition 3.1, we have

SJ
B={si|

aief
F + aiep

>
F

F + afep
, 1≤i≤n} (4.7)

SJ
A={si|

aief
F + aiep

<
F

F + afep
, 1≤i≤n} (4.8)

(A) To prove that SJ
B=XJ .

For any si, we have either (aief=0) or (aief>0). Therefore, SJ
B in (4.7) can be re-written

as

SJ
B={si|aief=0 and

aief
F+aiep

>
F

F+afep
, 1≤i≤n}∪{si|aief>0 and

aief
F+aiep

>
F

F+afep
, 1≤i≤n}

Consider the case that (aief=0). Since F>0 and (F+afep)>0 after Lemma 4.1, then

we have
ai
ef

F+ai
ep
= 0

F+ai
ep
=0< F

F+a
f
ep

, which is contradictory to
ai
ef

F+ai
ep
> F

F+a
f
ep

. Thus,

{si|aief=0 and
ai
ef

F+ai
ep
> F

F+a
f
ep

, 1≤i≤n}=∅, and hence we have

SJ
B = {si|aief>0 and

aief
F+aiep

>
F

F+afep
, 1≤i≤n} (4.9)

— Assume that si∈SJ
B. Refer to (4.9), we have (aief>0 and

ai
ef

F+ai
ep
> F

F+a
f
ep

). Since aief>0,

F>0, (F+aiep)>0 and (F+afep)>0,
ai
ef

F+ai
ep
> F

F+a
f
ep

implies
F+ai

ep

ai
ef

<
F+af

ep

F
. After re-

arranging the terms, we have 1+
af
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0. Thus, si∈XJ after (4.5). There-

fore, SJ
B⊆XJ .

— Assume that si∈XJ . Refer to (4.5), we have (aief>0 and 1+
af
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0). After

re-arranging the terms, 1+
af
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0 becomes
F+ai

ep

ai
ef

<
F+af

ep

F
, which implies

ai
ef

F+ai
ep
> F

F+a
f
ep

because aief>0, F>0, (F+aiep)>0 and (F+afep)>0. It follows from (4.9)

that si∈SJ
B . Therefore, XJ⊆SJ

B.
In summary, we have proved SJ

B=XJ .

(B) To prove that SJ
A=ZJ .

SJ
A in (4.8) can be re-written as

SJ
A={si|(aief=0 and

aief
F+aiep

<
F

F+afep
) or (aief>0 and

aief
F+aiep

<
F

F+afep
), 1≤i≤n}

Consider the case (aief=0) which implies
ai
ef

F+ai
ep
=0< F

F+a
f
ep

because F>0. Thus,

(aief=0 and
ai
ef

F+ai
ep
< F

F+a
f
ep

) is logically equivalent to (aief=0). Therefore, SJ
A becomes

SJ
A={si|(aief=0) or (aief>0 and

aief
F+aiep

<
F

F+afep
, 1≤i≤n} (4.10)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 X. Xie et al.

— Assume that si∈SJ
A. Refer to (4.10), we have (aief=0) or (aief>0 and

ai
ef

F+ai
ep
< F

F+a
f
ep

).

Consider the sub-case that (aief=0). Immediately after (4.6), we have si∈ZJ . Now,

consider the sub-case that (aief>0 and
ai
ef

F+ai
ep
< F

F+a
f
ep

). Since aief>0, F>0, (F+aiep)>0

and (F+afep)>0,
ai
ef

F+ai
ep
< F

F+a
f
ep

implies
F+ai

ep

ai
ef

>
F+af

ep

F
. After re-arranging the terms,

we have 1+
af
ep

F
− F

ai
ef

− ai
ep

ai
ef

<0. Thus, si∈ZJ after (4.6). Therefore, SJ
A⊆ZJ .

— Assume that si∈ZJ . Refer to (4.6), we have (aief=0) or (aief>0 and

1+
af
ep

F
− F

ai
ef

− ai
ep

ai
ef

<0). Consider the sub-case that (aief=0). Immediately after (4.10),

we have si∈SJ
A. Now, consider the sub-case that (aief>0 and 1+

af
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0).

After re-arranging the terms, 1+
af
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0 becomes
F+ai

ep

ai
ef

>
F+af

ep

F
, which

implies
ai
ef

F+ai
ep
< F

F+a
f
ep

because aief>0, F>0, (F+aiep)>0 and (F+afep)>0. It follows

from (4.10) that si∈SJ
A. Therefore, ZJ⊆SJ

A.
In summary, we have proved SJ

A=ZJ .

In conclusion, we have proved that SJ
B=XJ and SJ

A=ZJ .

With Lemma 4.5, we are going to prove the following proposition.

PROPOSITION 4.6. ER2 → ER3.

PROOF. In order to prove ER2 → ER3, it is sufficient to prove Jaccard → Tarantula.
As proved in Example 4.4, for Tarantula, ST

B and ST
A are equal to sets defined in (4.1)

and (4.3), respectively, as follows.

(4.1) : ST
B={si|aief>0 and

afep
F

−aiep
aief

>0, 1≤i≤n}

(4.3) : ST
A={si|(aief = 0) or (aief>0 and

afep
F

−aiep
aief

<0), 1≤i≤n}

It follows from Lemma 4.5 that SJ
B and SJ

A are equal to the sets defined in (4.5) and
(4.6), respectively, as follows.

(4.5) : SJ
B={si|aief > 0 and 1 +

afep
F

− F

aief
− aiep

aief
> 0, 1≤i≤n}

(4.6) : SJ
A={si|(aief = 0) or (aief > 0 and 1 +

afep
F

− F

aief
−

aiep
aief

< 0), 1≤i≤n}

Refer to (4.5) and (4.6), after re-arranging the terms in 1+
af
ep

F
− F

ai
ef

−ai
ep

ai
ef

, we have

1+
afep
F

− F

aief
−aiep
aief

=(
afep
F

−aiep
aief

)+(1− F

aief
)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:19

Since 1− F
ai
ef

≤0 after Lemma 4.1, we have

1+
afep
F

− F

aief
−aiep
aief

≤ afep
F

−aiep
aief

(4.11)

(A) To prove that SJ
B⊆ST

B.

Assume si∈SJ
B. Then, we have (aief>0 and 1+

af
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0) after (4.5). It follows

from (4.11) that
af
ep

F
− ai

ep

ai
ef

>0. Thus, si∈ST
B after (4.1). Therefore, SJ

B⊆ST
B.

(B) To prove that ST
A⊆SJ

A.

Assume si∈ST
A . Then, we have either (aief=0) or (aief>0 and

af
ep

F
−ai

ep

ai
ef

<0) after (4.3).

— Consider the case that (aief=0). Immediately after (4.6), si∈SJ
A.

— Consider the case that (aief>0 and
af
ep

F
− ai

ep

ai
ef

<0). Then, it follows from (4.11) that

1+
af
ep

F
− F

ai
ef

− ai
ep

ai
ef

<0. Thus, si∈SJ
A after (4.6).

In summary, we have proved ST
A⊆SJ

A.

In conclusion, we have SJ
B⊆ST

B and ST
A⊆SJ

A. Immediately after Theorem 3.6, Jaccard
→ Tarantula. Thus, it follows after Proposition 4.3 that ER2 → ER3.

We now present the following proposition about the relation between ER2 and ER4.

PROPOSITION 4.7. ER2 → ER4.

PROOF. In order to prove ER2 → ER4, it is sufficient to prove Jaccard → Wong2. As
stated in Table I, Wong2 is defined as follows.

RW2(si) = aief − aiep

After Lemma 4.2 and Definition 3.1, we have

SW2
B = {si|aief−aiep>F−afep, 1≤i≤n}

SW2
A = {si|aief−aiep<F−afep, 1≤i≤n}

Use the set descriptions for SJ
B and SJ

A in Lemma 4.5. Similar to the proof of Proposi-
tion 4.6, we can prove that SJ

B⊆SW2
B and SW2

A ⊆SJ
A, and hence Jaccard → Wong2. After

Proposition 4.3, ER2 → ER4.

Now, let us consider the relations among ER2, Ochiai and Kulczynski2. To prove
their relations, we need the following two lemmas for Ochiai and Kulczynski2, of which
the proofs are omitted as they are similar to the proof of Lemma 4.51.

LEMMA 4.8. For Ochiai, we have

SO
B={si|aief>0 and (1 +

afep
F

)
aief
F

− 1− aiep
aief

>0, 1≤i≤n} (4.12)

SO
A={si|(aief = 0) or (aief>0 and (1 +

afep
F

)
aief
F

− 1− aiep
aief

<0), 1≤i≤n} (4.13)

1Readers who are interested in the proofs that are omitted in this paper because of their similarity with
other proofs, may consult [Xie 2012].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 X. Xie et al.

LEMMA 4.9. For Kulczynski2, we have

SK2
B ={si|aief>0 and

aiefF+aiefa
f
ep−F 2

F 2+(F+afep)(F−aief)
−aiep
aief

>0, 1≤i≤n} (4.14)

SK2
A ={si|(aief = 0) or (aief>0 and

aiefF+aiefa
f
ep−F 2

F 2+(F+afep)(F−aief)
−
aiep
aief

<0), 1≤i≤n} (4.15)

With Lemma 4.5, Lemma 4.8 and Lemma 4.9, we are going to prove the following
two propositions.

PROPOSITION 4.10. Ochiai → ER2.

PROOF. In order to prove Ochiai → ER2, it is sufficient to prove Ochiai → Jaccard.
It follows from Lemma 4.5 that SJ

B and SJ
A are equal to the sets defined in (4.5) and

(4.6), respectively, as follows.

(4.5) : SJ
B={si|aief > 0 and 1 +

afep
F

− F

aief
−

aiep
aief

> 0, 1≤i≤n}

(4.6) : SJ
A={si|(aief = 0) or (aief > 0 and 1 +

afep
F

− F

aief
−

aiep
aief

< 0), 1≤i≤n}

And it follows from Lemma 4.8 that SO
B and SO

A are equal to the sets defined in (4.12)
and (4.13), respectively, as follows.

(4.12) : SO
B={si|aief>0 and (1 +

afep
F

)
aief
F

− 1− aiep
aief

>0, 1≤i≤n}

(4.13) : SO
A={si|(aief = 0) or (aief>0 and (1 +

afep
F

)
aief
F

− 1− aiep
aief

<0), 1≤i≤n}

Let fJ and fO denote the following expressions.

fJ(si) = 1 +
afep
F

− F

aief
=

aiefF + aiefa
f
ep − F 2

Faief
(4.16)

fO(si) = (1 +
afep
F

)
aief
F

− 1 =
aiefF + aiefa

f
ep − F 2

F 2
(4.17)

(A) To prove that SO
B⊆SJ

B.

Assume si∈SO
B . Then, we have (aief>0 and fO(si) − ai

ep

ai
ef

>0) after (4.12) and (4.17).

Since aiep≥0 and aief>0, then
ai
ep

ai
ef

≥0 and thus fO(si)>0. Then from (4.17), we have

(aiefF+aiefa
f
ep−F 2)>0 because F 2>0. It follows from Lemma 4.1 and aief>0 that

F 2≥Faief>0. Then, from (4.16) and (4.17), we have fJ(si)≥fO(si). As a consequence,

fJ(si)− ai
ep

ai
ef

≥fO(si)− ai
ep

ai
ef

>0. It follows from (4.5) that si∈SJ
B . Thus, SO

B⊆SJ
B.

(B) To prove that SJ
A⊆SO

A .

Assume si∈SJ
A. Then, we have either (aief=0) or (aief>0 and fJ(si)− ai

ep

ai
ef

<0) after (4.6).

— Consider the case that (aief=0). Immediately, we have si∈SO
A after (4.13).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:21

— Consider the case that (aief>0 and fJ(si)− ai
ep

ai
ef

<0). Consider the sub-case that

fJ(si)<0. Since Faief>0, we have (aiefF+aiefa
f
ep−F 2)<0 from (4.16). Then, fO(si)<0

from (4.17) because F 2>0. As a consequence, fO(si)− ai
ep

ai
ef

<0. Hence, si∈SO
A af-

ter (4.13). Next consider the sub-case that fJ(si)=0. Then, (aiefF+aiefa
f
ep−F 2)=0.

Thus we have fO(si)=fJ(si)=0 from (4.17). Furthermore, since fJ(si)− ai
ep

ai
ef

<0 and

fJ(si)=0, we have
ai
ep

ai
ef

>0. As a consequence, fO(si)− ai
ep

ai
ef

<0. Hence, si∈SO
A af-

ter (4.13). Finally, consider the sub-case that fJ(si)>0. Since Faief>0, we have

(aiefF+aiefa
f
ep−F 2)>0. It follows from Lemma 4.1 that F 2≥Faief . Then, from (4.16)

and (4.17), we have fJ(si)≥fO(si). As a consequence, fO(si)− ai
ep

ai
ef

≤fJ(si)− ai
ep

ai
ef

<0.

Thus, si∈SO
A after (4.13).

In summary, we have proved SJ
A⊆SO

A .

In conclusion, we have SO
B⊆SJ

B and SJ
A⊆SO

A . Immediately after Theorem 3.6, Ochiai
→ Jaccard. It follows after Proposition 4.3 that Ochiai → ER2.

PROPOSITION 4.11. Kulczynski2 → Ochiai.

PROOF. Use the set descriptions for SO
B and SO

A in Lemma 4.8 and the set descrip-
tions for SK2

B and SK2
A in Lemma 4.9. Similar to the proof of Proposition 4.10, we can

prove that SK2
B ⊆SO

B and SO
A⊆SK2

A , and hence Kulczynski2 → Ochiai.

Figure 3(a) follows immediately from Proposition 4.6, Proposition 4.7, Proposi-
tion 4.10 and Proposition 4.11. Now, let us consider Figure 3(b) that states the relation
between M2 and AMPLE2, of which the proof needs the following two lemmas for M2
and AMPLE2. The proofs of these two lemmas are omitted since they are similar to
the proof of Lemma 4.5.

LEMMA 4.12. For M2, we have

SM2
B ={si|aief>0 and

P+afep
F

−2F+P

aief
+2−aiep

aief
>0, 1≤i≤n} (4.18)

SM2
A ={si|(aief = 0) or (aief>0 and

P+afep
F

−2F+P

aief
+2−aiep

aief
<0), 1≤i≤n} (4.19)

LEMMA 4.13. For AMPLE2, we have

SA
B={si|aief>0 and

Paief−PF+Fafep

Faief
−aiep
aief

>0, 1≤i≤n} (4.20)

SA
A={si|(aief = 0) or (aief>0 and

Paief−PF+Fafep

Faief
−
aiep
aief

<0), 1≤i≤n} (4.21)

With the above two lemmas, we can prove the following proposition.

PROPOSITION 4.14. M2 → AMPLE2.

PROOF. Use the set descriptions for SM2
B and SM2

A in Lemma 4.12 and the set de-
scriptions for SA

B and SA
A in Lemma 4.13. Similar to the proof of Proposition 4.6, we can

prove that SM2
B ⊆SA

B and SA
A⊆SM2

A , and hence M2 → AMPLE2.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 X. Xie et al.

Figure 3 implies that if Kulczynski2 is not a maximal formula, Ochiai, ER2, ER3
and ER4 can never be maximal; if M2 is not a maximal formula, AMPLE2 can never
be a maximal formula. As a matter of fact, all formulas in Figure 3 are not maximal
formulas, because apart from the performance hierarchy chains shown in Figure 3,
there exists another hierarchy chain shown in Figure 4, where all relations “→” are
strictly “better” relations. Therefore, Kulczynski2 and M2, as well as ER6, Arithmetic
Mean, Cohen, Fleiss and Wong3, are not maximal formulas.

Fig. 4. Another performance hierarchy chain of risk evaluation formulas

In order to prove the relations shown in Figure 4, we need the following lemma for
Naish1 of ER1.

LEMMA 4.15. For Naish1, we have SN1
B =XN1 and SN1

A =ZN1, where

XN1={si|aief=F and afep−aiep>0, 1≤i≤n} (4.22)

ZN1={si|(aief < F) or (aief=F and afep−aiep<0), 1≤i≤n} (4.23)

PROOF. As stated in Table I, Naish1 is defined as follows.

RN1(si) =











−1 if aief<F

P − aiep if aief=F

After Definition 3.1, we have

SN1
B ={si|(aief<F and −1>P−afep) or (aief=F and P−aiep>P−afep), 1≤i≤n}

which can be re-written as

SN1
B ={si|aief<F and −1>P−afep, 1≤i≤n}∪{si|aief=F and afep−aiep>0, 1≤i≤n}

Since (−1<P−afep) after Lemma 4.1, we have {si|aief<F and −1>P−afep, 1≤i≤n}=∅.

Therefore, SN1
B ={si|aief=F and afep−aiep>0, 1≤i≤n}=XN1.

Now, consider SN1
A . After the definition of Naish1 and Definition 3.1, we have

SN1
A ={si|(aief<F and −1<P−afep) or (aief=F and P−aiep<P−afep), 1≤i≤n}

Since (−1<P−afep) after Lemma 4.1, (aief<F and −1<P−afep) is logically equivalent

to (aief<F). Therefore, SN1
A becomes {si|(aief<F) or (aief=F and afep−aiep<0), 1≤i≤n}.

That is, SN1
A =ZN1.

With Lemma 4.9 and Lemma 4.15, we can prove that ER1 → Kulczynski2.

PROPOSITION 4.16. ER1 → Kulczynski2.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:23

PROOF. In order to prove ER1 → Kulczynski2, it is sufficient to prove Naish1 →
Kulczynski2. It follows from Lemma 4.9 that SK2

B and SK2
A are equal to the sets defined

in (4.14) and (4.15), respectively, as follows.

(4.14) : SK2
B ={si|aief>0 and

aiefF+aiefa
f
ep−F 2

F 2+(F+afep)(F−aief)
−aiep
aief

>0, 1≤i≤n}

(4.15) : SK2
A ={si|(aief = 0) or (aief>0 and

aiefF+aiefa
f
ep−F 2

F 2+(F+afep)(F−aief)
−aiep
aief

<0), 1≤i≤n}

It follows from Lemma 4.15 that SN1
B and SN1

A are equal to the sets defined in (4.22)
and (4.23), respectively, as follows.

(4.22) : SN1
B ={si|aief=F and afep−aiep>0, 1≤i≤n}

(4.23) : SN1
A ={si|(aief < F) or (aief=F and afep−aiep<0), 1≤i≤n}

(A) To prove that SN1
B ⊆SK2

B .
Assume si∈SN1

B . Then, aief=F>0 and (afep−aiep)>0 after (4.22). As a consequence,

we have
ai
efF+ai

efa
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef
)
− ai

ep

ai
ef

=
F 2+Faf

ep−F 2
−Fai

ep

F 2 =
af
ep−ai

ep

F
>0. Therefore, si∈SK2

B after

(4.14). Thus, SN1
B ⊆SK2

B .

(B) To prove that SK2
A ⊆SN1

A .

Suppose si∈SK2
A . Then we have either (aief=0) or (aief>0 and

ai
efF+ai

efa
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef
)
− ai

ep

ai
ef

<0)

after (4.15).
— Consider the case that (aief=0). Obviously, aief<F . Immediately after (4.23), si∈SN1

A .

— Consider the case that (aief>0 and
ai
efF+ai

efa
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef
)
− ai

ep

ai
ef

<0). Consider the

sub-case that 0<aief<F . After (4.23), we have si∈SN1
A . Next, consider the

sub-case that aief=F . Then we have
ai
efF+ai

efa
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef
)
− ai

ep

ai
ef

=
af
ep−ai

ep

F
. Since

ai
efF+ai

efa
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef
)
−ai

ep

ai
ef

<0 and F>0, we have (afep−aiep)<0. Thus, si∈SN1
A after (4.23).

In summary, we have proved SK2
A ⊆SN1

A .

In conclusion, we have SN1
B ⊆SK2

B and SK2
A ⊆SN1

A . Immediately after Theorem 3.6,
Naish1 → Kulczynski2. It follows after Proposition 4.3 that ER1 → Kulczynski2.

The following Proposition 4.17, Proposition 4.18, Proposition 4.19, Proposition 4.20
and Proposition 4.21 can be proved in a similar way as Proposition 4.16, and hence
their proofs are omitted.

PROPOSITION 4.17. ER1 → M2.

PROPOSITION 4.18. ER1 → ER6.

PROPOSITION 4.19. ER1 → Arithmetic Mean.

PROPOSITION 4.20. ER1 → Cohen.

PROPOSITION 4.21. ER1 → Fleiss.

Prior to the presentation of the relation between ER1 and Wong3, we need the fol-
lowing lemma for Wong3.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 X. Xie et al.

LEMMA 4.22. For Wong3, we have its SW3
B , SW3

F and SW3
A as follows.

1. If afep≤2, then we have SW3
B =XW3

1 and SW3
A =ZW3

1 , where

XW3
1 ={si|aiep≤2 and (aief−F)+(afep−aiep)>0, 1≤i≤n} (4.24)

ZW3
1 ={si|(aiep>2) or (aiep≤2 and (aief−F)+(afep−aiep)<0), 1≤i≤n} (4.25)

2. If 2<afep≤10, then we have SW3
B =XW3

2 and SW3
A =ZW3

2 , where

XW3
2 ={si|(aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8>0) or

(2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)>0), 1≤i≤n} (4.26)

ZW3
2 ={si|(aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8<0) or

(2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)<0) or

(aiep>10), 1≤i≤n} (4.27)

3. If afep>10, then we have SW3
B =XW3

3 and SW3
A =ZW3

3 , where

XW3
3 ={si|(aiep≤2 and (aief−F)+(0.001afep−aiep)+2.79>0) or

(2<aiep≤10 and (aief−F)+(0.001afep−0.1aiep)+0.99>0) or

(aiep>10 and (aief−F)+(0.001afep−0.001aiep)>0), 1≤i≤n} (4.28)

ZW3
3 ={si|(aiep≤2 and (aief−F)+(0.001afep−aiep)+2.79<0) or

(2<aiep≤10 and (aief−F)+(0.001afep−0.1aiep)+0.99<0) or

(aiep>10 and (aief−F)+(0.001afep−0.001aiep)<0), 1≤i≤n} (4.29)

PROOF. As stated in Table I, formula Wong3 is defined as RW3(si) = aief − h, where

h =



























aiep if aiep≤2

2 + 0.1(aiep − 2) if 2<aiep≤10

2.8 + 0.001(aiep − 10) if aiep>10

1. Case 1: Assume afep≤2.

Then, RW3(sf) = F−afep. After Definition 3.1, we have

SW3
B ={si|aiep≤2 and aief−aiep>F−afep, 1≤i≤n}

∪{si|2<aiep≤10 and aief−2−0.1(aiep−2)>F−afep, 1≤i≤n}
∪{si|aiep>10 and aief−2.8−0.001(aiep−10)>F−afep, 1≤i≤n}

By re-arranging the terms, we have

SW3
B ={si|aiep≤2 and (aief−F)+(afep−aiep)>0, 1≤i≤n}

∪{si|2<aiep≤10 and (aief−F)+(afep−0.1aiep)−1.8>0, 1≤i≤n}
∪{si|aiep>10 and (aief−F)+(afep−0.001aiep)−2.79>0, 1≤i≤n} (4.30)

Consider the case that (aiep>10). We have (afep−0.001aiep)−2.79<0 because

afep≤2 and aiep>10. Since aief−F≤0, we have (aief−F)+(afep−0.001aiep)−2.79<0,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:25

which is contradictory to (aief−F)+(afep−0.001aiep)−2.79>0. Thus,

{si|aiep>10 and (aief−F)+(afep−0.001aiep)−2.79>0, 1≤i≤n}=∅. Hence, SW3
B in (4.30)

becomes

SW3
B ={si|aiep≤2 and (aief−F)+(afep−aiep)>0, 1≤i≤n}

∪{si|2<aiep≤10 and (aief−F)+(afep−0.1aiep)−1.8>0, 1≤i≤n} (4.31)

Next, consider the case that (2<aiep≤10). Since afep≤2<aiep≤10, we have

(afep−0.1aiep)−1.8<0. It follows after Lemma 4.1 that aief−F≤0. Therefore, we have

(aief−F) +(afep−0.1aiep)−1.8<0, which is contradictory to (aief−F)+(afep−0.1aiep)−1.8>0.

Thus, {si|2<aiep≤10 and (aief−F)+(afep−0.1aiep)−1.8>0, 1≤i≤n}=∅. Therefore, SW3
B in

(4.31) becomes

SW3
B ={si|aiep≤2 and (aief−F)+(afep−aiep)>0, 1≤i≤n}=XW3

1

After the definition of Wong3 and Definition 3.1, and re-arranging the terms, we have

SW3
A ={si|aiep≤2 and (aief−F)+(afep−aiep)<0, 1≤i≤n}

∪{si|2<aiep≤10 and (aief−F)+(afep−0.1aiep)−1.8<0, 1≤i≤n}
∪{si|aiep>10 and (aief−F)+(afep−0.001aiep)−2.79<0, 1≤i≤n} (4.32)

As explained in the above proof of SW3
B =XW3

1 , since afep≤2, (2<aiep≤10) implies

(aief−F)+(afep−0.1aiep)−1.8<0, and (aiep>10) implies (aief−F)+(afep−0.001aiep)−2.79<0.

Thus, (2<aiep≤10 and (aief−F)+(afep−0.1aiep)−1.8<0) is logically equivalent to

(2<aiep≤10), and (aiep>10 and (aief−F)+(afep−0.001aiep)−2.79<0) is logically equivalent

to (aiep>10). Therefore, SW3
A in (4.32) becomes

SW3
A ={si|aiep≤2 and (aief−F)+(afep−aiep)<0, 1≤i≤n}

∪{si|2<aiep≤10, 1≤i≤n}∪{si|aiep>10, 1≤i≤n}
={si|aiep≤2 and (aief−F)+(afep−aiep)<0, 1≤i≤n}∪{si|aiep>2, 1≤i≤n}
={si|(aiep>2) or (aiep≤2 and (aief−F)+(afep−aiep)<0), 1≤i≤n}=ZW3

1

2. Case 2: Assume 2<afep≤10.

Then, RW3(sf)=F−2−0.1(afep−2)=F−0.1afep−1.8. After Definition 3.1 and re-arranging
the terms, we have

SW3
B ={si|aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8>0, 1≤i≤n}

∪{si|2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)>0, 1≤i≤n}
∪{si|aiep>10 and (aief−F)+(0.1afep−0.001aiep)−0.99>0, 1≤i≤n} (4.33)

Consider the case that aiep>10. Thus, we have 2<afep≤10<aiep, which

implies (0.1afep−0.001aiep)−0.99<0. It follows after Lemma 4.1 that

aief−F≤0. Therefore, we have (aief−F)+(0.1afep−0.001aiep)−0.99<0,

which is contradictory to (aief−F)+(0.1afep−0.001aiep)−0.99>0. Thus,

{si|aiep>10 and (aief−F)+(0.1afep−0.001aiep)−0.99>0, 1≤i≤n}=∅. Then, SW3
B in (4.33)

becomes

SW3
B ={si|aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8>0, 1≤i≤n}

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 X. Xie et al.

∪{si|2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)>0, 1≤i≤n}
={si|(aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8>0) or

(2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)>0), 1≤i≤n}=XW3
2

After the definition of Wong3 and Definition 3.1, and re-arranging the terms, we have

SW3
A ={si|aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8<0, 1≤i≤n}

∪{si|2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)<0, 1≤i≤n}
∪{si|aiep>10 and (aief−F)+(0.1afep−0.001aiep)−0.99<0, 1≤i≤n} (4.34)

As explained in the above proof of SW3
B =XW3

2 , since 2<afep≤10, (aiep>10) implies

(aief−F)+(0.1afep−0.001aiep)−0.99<0. Thus, (aiep>10 and (aief−F)+(0.1afep−0.001aiep)

−0.99<0) is logically equivalent to (aiep>10). Therefore, SW3
A in (4.34) becomes

SW3
A ={si|aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8<0, 1≤i≤n}

∪{si|2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)<0, 1≤i≤n}∪{si|aiep>10, 1≤i≤n}
={si|(aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8<0) or

(2<aiep≤10 and (aief−F)+(0.1afep−0.1aiep)<0) or (aiep>10), 1≤i≤n}
=ZW3

2

3. Case 3: Assume afep>10.

Then, RW3(sf)=F−2.8−0.001(afep−10)=F−0.001afep−2.79. After Definition 3.1, we have

SW3
B ={si|aiep≤2 and aief−aiep>F−0.001afep−2.79, 1≤i≤n}

∪{si|2<aiep≤10 and aief−2−0.1(aiep−2)>F−0.001afep−2.79, 1≤i≤n}
∪{si|aiep>10 and aief−2.8−0.001(aiep−10)>F−0.001afep−2.79, 1≤i≤n} (4.35)

SW3
A ={si|aiep≤2 and aief−aiep<F−0.001afep−2.79, 1≤i≤n}

∪{si|2<aiep≤10 and aief−2−0.1(aiep−2)<F−0.001afep−2.79, 1≤i≤n}
∪{si|aiep>10 and aief−2.8−0.001(aiep−10)<F−0.001afep−2.79, 1≤i≤n} (4.36)

It is obvious that through re-arranging the terms and merging the subsets, we have
SW3
B =XW3

3 and SW3
A =ZW3

3 .

With Lemma 4.15 and Lemma 4.22, we are now ready to prove the following relation
between ER1 and Wong3.

PROPOSITION 4.23. ER1 → Wong3.

PROOF. In order to prove ER1 → Wong3, it is sufficient to prove Naish1 → Wong3.
It follows from Lemma 4.15 that SN1

B and SN1
A are equal to the sets defined in (4.22)

and (4.23), respectively, as follows.

(4.22) : SN1
B ={si|aief=F and afep−aiep>0, 1≤i≤n}

(4.23) : SN1
A ={si|(aief < F) or (aief=F and afep−aiep<0), 1≤i≤n}

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:27

For Wong3, as shown in Lemma 4.22, SW3
B and SW3

A are different in three situations.
Under each situation, we are going to prove that SN1

B ⊆SW3
B and SW3

A ⊆SN1
A .

1. Case 1: Assume afep≤2.

It follows from Lemma 4.22 that SW3
B and SW3

A are equal to the sets defined in (4.24)
and (4.25), respectively.

(A) To prove that SN1
B ⊆SW3

B .
Assume si∈SN1

B . Refer to (4.22), we have (aief=F) and (afep−aiep)>0. As a consequence,

(aief−F)+(afep−aiep)=(afep−aiep)>0. Furthermore, since afep≤2, we have aiep<afep≤2.

Then, si∈SW3
B after (4.24) that defines SW3

B . Thus, SN1
B ⊆SW3

B .

(B) To prove that SW3
A ⊆SN1

A .
Assume si∈SW3

A . Refer to (4.25) that defines SW3
A , we have either (aiep>2), or (aiep≤2

and (aief−F)+(afep−aiep)<0).

— Consider the case that (aiep>2). Consider the sub-case that aief<F . Immediately, we

have si∈SN1
A after (4.23). Then consider the sub-case that aief=F . Since aiep>2 and

afep≤2, we have (afep−aiep)<0. Thus after (4.23), si∈SN1
A .

— Consider the case that (aiep≤2 and (aief−F)+(afep−aiep)<0). Consider the sub-

case that aief<F . Then, si∈SN1
A after (4.23). Now consider the sub-case that

aief=F . We have (aief−F)+(afep−aiep)=(afep−aiep). Since (aief−F)+(afep−aiep)<0, then

(afep−aiep)<0. After (4.23), si∈SN1
A .

In summary, we have proved SW3
A ⊆SN1

A .

2. Case 2: Assume 2<afep≤10.

It follows from Lemma 4.22 that SW3
B and SW3

A are equal to the sets descriptions in
(4.26) and (4.27), respectively.

(A) To prove that SN1
B ⊆SW3

B .
Assume si∈SN1

B . Refer to (4.22), we have (aief=F) and (afep−aiep)>0. Since 2<afep≤10, we

have aiep<10. Consider the following two cases:

— Suppose aiep≤2. Since aief=F , we have

(aief−F)+(0.1afep−aiep)+1.8=0.1(afep−aiep)+(1.8−0.9aiep)>0

because (afep−aiep)>0 and (1.8−0.9aiep)≥0 after aiep≤2. After (4.26) that defines SW3
B ,

we have si∈SW3
B .

— Suppose 2<aiep<10. Since aief=F , we have

(aief−F)+0.1(afep−aiep)=0.1(afep−aiep)>0

because (afep−aiep)>0. Thus, si∈SW3
B after (4.26).

In summary, we have proved SN1
B ⊆SW3

B .

(B) To prove that SW3
A ⊆SN1

A .
Assume si∈SW3

A . Refer to (4.27) that defines SW3
A , we have either (aiep>10), (2<aiep≤10

and (aief−F)+0.1(afep−aiep)<0), or (aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8<0).

— Consider the case that aiep>10. Consider the sub-case that aief<F . Immediately af-

ter (4.23), we have si∈SN1
A . Then consider the sub-case that aief=F . Since 2<afep≤10

and aiep>10, we have (afep−aiep)<0. After (4.23), si∈SN1
A .

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 X. Xie et al.

— Consider the case that (2<aiep≤10 and (aief−F)+0.1(afep−aiep)<0). Consider the

sub-case that aief<F . Then, we have si∈SN1
A after (4.23). Now consider the

sub-case that aief=F . Then, we have (aief−F)+0.1(afep−aiep)=0.1(afep−aiep). Since

(aief−F)+0.1(afep−aiep)<0, then (afep−aiep)<0. After (4.23), si∈SN1
A .

— Consider the case that (aiep≤2 and (aief−F)+(0.1afep−aiep)+1.8<0). Assume further

that aief=F . Then, we have (aief−F)+(0.1afep−aiep)+1.8=0.1afep−aiep+1.8<0. How-

ever, it follows from 2<afep≤10 and aiep≤2 that 0.1afep−aiep+1.8>0, which is contra-

dictory to 0.1afep−aiep+1.8<0. Therefore, it is impossible to have aief=F and all state-

ments in this case have aief<F . Then, we have si∈SN1
A after (4.23).

In summary, we have proved SW3
A ⊆SN1

A .

3. Case 3: Assume afep>10.

It follows from Lemma 4.22 that SW3
B and SW3

A are equal to the sets defined in (4.28)
and (4.29), respectively.

(A) To prove that SN1
B ⊆SW3

B .
Assume si∈SN1

B . Refer to (4.22), we have (aief=F) and (afep−aiep)>0. Since afep>10, aiep
can be any value within [0, P]. Then, let us consider the following cases:
— Suppose aiep≤2. Since aief=F , we have

(aief−F)+(0.001afep−aiep)+2.79=0.001(afep−aiep)+(2.79−0.999aiep)>0

because (afep−aiep)>0 and (2.79−0.999aiep)>0 after aiep≤2. After (4.28) that defines

SW3
B , we have si∈SW3

B .
— Suppose 2<aiep≤10. Since aief=F , we have

(aief−F)+(0.001afep−0.1aiep)+0.99=0.001(afep−aiep)+(0.99−0.099aiep)>0

because (afep−aiep)>0 and (0.99−0.099aiep)≥0 after 2<aiep≤10. After (4.28), si∈SW3
B .

— Suppose aiep>10. Since aief=F , we have

(aief−F)+0.001(afep−aiep)=0.001(afep−aiep)>0

because (afep−aiep)>0. Thus, si∈SW3
B after (4.28).

In summary, we have proved SN1
B ⊆SW3

B .

(B) To prove that SW3
A ⊆SN1

A .
Assume si∈SW3

A . Refer to (4.29) that defines SW3
A ,

we have either (aiep≤2 and (aief−F)+(0.001afep−aiep)+2.79<0),

(2<aiep≤10 and (aief−F)+(0.001afep−0.1aiep)+0.99<0), or (aiep>10 and (aief−F)+

0.001(afep−aiep)<0).

— Consider the case that (aiep≤2 and (aief−F)+(0.001afep−aiep)+2.79<0). Assume fur-

ther aief=F . Then, we have

(aief−F)+(0.001afep−aiep)+2.79 = 0.001afep−aiep+2.79 < 0

However, it follows from afep>10 and aiep≤2 that 0.001afep−aiep+2.79>0.8, which is

contradictory to 0.001afep−aiep+2.79<0. Therefore, it is impossible to have aief=F

and all statements in this case have aief<F . Then, we have si∈SN1
A after (4.23).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:29

— Consider the case that (2<aiep≤10 and (aief−F)+(0.001afep−0.1aiep)+0.99<0). As-

sume further aief=F . Then, we have

(aief−F)+(0.001afep−0.1aiep)+0.99 = 0.001afep−0.1aiep+0.99 < 0

However, it follows from afep>10 and 2<aiep≤10 that 0.001afep−0.1aiep+0.99>0, which

is contradictory to 0.001afep−0.1aiep+0.99<0. Therefore, it is impossible to have

aief=F and all statements in this case have aief<F . Then, we have si∈SN1
A after

(4.23).
— Consider the case that (aiep>10 and (aief−F)+0.001(afep−aiep)<0). Consider the

sub-case that aief<F . Then, si∈SN1
A after (4.23). Now consider the sub-

case that aief=F . Then, we have (aief−F)+0.001(afep−aiep)=0.001(afep−aiep). Since

(aief−F)+0.001(afep−aiep)<0, then (afep−aiep)<0. Therefore, si∈SN1
A after (4.23).

In summary, we have proved SW3
A ⊆SN1

A .
In conclusion, for any value of afep, we have SN1

B ⊆SW3
B and SW3

A ⊆SN1
A . It follows from

Theorem 3.6 that Naish1 → Wong3. Therefore, we have ER1 → Wong3 after Proposi-
tion 4.3.

Following from Proposition 4.16, Proposition 4.17, Proposition 4.18, Proposition 4.19,
Proposition 4.20, Proposition 4.21 and Proposition 4.23, Figure 4 is formally estab-
lished. Now, we are going to prove that all the “better” (“→”) relations in Figure 4 are
strictly “better”, by showing that there are scenarios where Kulczynski2, M2, ER6,
Arithmetic Mean, Cohen, Fleiss or Wong3 are worse (that is, not “better”) than ER1.

In the proofs of the following propositions, we will construct the relevant scenarios
by referring to the two sample programs PG1 and PG2 shown in Figure 5 and Figure 6,
respectively. In these two programs, s5 is the faulty statement. Table II lists the Ai for
PG1 with respect to three test suites (TS1, TS2 and TS3) and Table III gives the Ai for
PG2 with respect to test suite TS3.

Fig. 5. Sample program PG1

Fig. 6. Sample program PG2

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 X. Xie et al.

Table II. Ai for PG1 with different test suites

Statement
Ai=<ai

ef
, aiep, a

i
nf

, ainp>

TS1 TS2 TS3

s1 <40, 160, 0, 0> <1, 10, 0, 0> <40, 160, 0, 0>

s2 <0, 40, 40, 120> <0, 1, 1, 9> <0, 70, 40, 90>

s3 <40, 120, 0, 40> <1, 9, 0, 1> <40, 90, 0, 70>

s4 <0, 40, 40, 120> <0, 7, 1, 3> <0, 30, 40, 130>

s5 <40, 80, 0, 80> <1, 2, 0, 8> <40, 60, 0, 100>

s6 <35, 20, 5, 140> <1, 1, 0, 9> <40, 30, 0, 130>

s7 <5, 60, 35, 100> <0, 1, 1, 9> <0, 30, 40, 130>

s8 <40, 80, 0, 80> <1, 2, 0, 8> <40, 60, 0, 100>

Table III. Ai for PG2 with TS3

Statement Ai=<ai
ef

, aiep, a
i
nf

, ainp>

s1 <40, 160, 0, 0>

s2 <0, 70, 40, 90>

s3 <40, 90, 0, 70>

s4 <0, 30, 40, 130>

s5 <40, 60, 0, 100>

s6 <40, 30, 0, 130>

s7 <0, 30, 40, 130>

s8 <40, 30, 0, 130>

s9 <40, 30, 0, 130>

s10 <40, 60, 0, 100>

As a reminder, all these test suites are feasible. First, they comply with Lemma 4.1
and Lemma 4.2. Secondly, the entry statement s1 has (a1nf=0) and (a1np=0). Thirdly,

for any si in PG1 and PG2, the value of element aief or aiep is equal to the sum of the
corresponding element contributed by all of its directly preceding statements, and also
equal to the sum of its contribution to all of its directly succeeding statements.

Table IV lists the statement divisions for different formulas with respect to different
test suites and programs. Row headings from the second row to the seventh row list
six scenarios that are referred to in the following proofs; column headings from the
second column to the fifth column list four combinations of program and test suite
used in the following proofs. For any formula appearing in a specific entry of Table IV,
if it is applied on the relevant combination of program and test suite (column), its sets

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:31

Table IV. Sets for different combinations of formula and test suite

Scenarios
TS1

on PG1

TS2

on PG1

TS3

on PG1

TS3

on PG2

A

SR
B

∅

ER1SR
F {s5, s8}

SR
A

{s1, s2, s3, s4, s6, s7}

B

SR
B {s6} Kulczynski2, M2,

ER1 ER1SR
F

{s5, s8} ER6, Cohen, Fleiss,

SR
A

{s1, s2, s3, s4, s7} Arithmetic Mean

C

SR
B {s6}

Wong3SR
F

{s2, s5, s7, s8}

SR
A {s1, s3, s4}

D

SR
B

∅

ER5SR
F {s1, s3, s5, s6, s8}

SR
A

{s2, s4, s7}

E

SR
B {s6, s8, s9}

ER1SR
F

{s5, s10}

SR
A {s1, s2, s3, s4, s7}

F

SR
B

∅

ER5SR
F {s1, s3, s5, s6, s8, s9, s10}

SR
A

{s2, s4, s7}

Note: Ai for PG1 with TS1 to TS3 are shown in Table II; Ai for PG2 with TS3 are shown in
Table III.

would be the same as the relevant scenario (row). For example, ER1 in the column
of “TS1 on PG1” and the row of “A” means that by using test suite TS1 on program
PG1, the SR

B , SR
F and SR

A for ER1 are as scenario A which has SR
B=∅, SR

F ={s5, s8} and
SR
A={s1, s2, s3, s4, s6, s7}.

PROPOSITION 4.24. ER1 is strictly “better” than formulas Kulczynski2, M2, ER6,
Arithmetic Mean, Cohen, Fleiss and Wong3.

PROOF. As listed in Table IV, for the column of “TS1 on PG1”, the statement divi-
sions for ER1 are as scenario A; while for formulas Kulczynski2, M2, ER6, Arithmetic
Mean, Cohen and Fleiss, the corresponding SR

B , SR
F and SR

A are as scenario B. As seen
in Table IV, the SR

F for Kulczynski2, M2, ER6, Arithmetic Mean, Cohen and Fleiss are
the same as the SR

F for ER1; but the sizes of SR
B (=1) for these six formulas are larger

than the corresponding size (=0) for ER1. If we adopt a consistent tie-breaking scheme,
such as the ORIGINAL ORDER scheme that ranks all statements in SR

F according to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 X. Xie et al.

their original order in program, the faulty statement which is s5 would be ranked the
highest in ER1 and the second highest in the other six formulas. Thus, the EXAM score
of ER1 is less than the EXAM scores of the six formulas. It follows immediately from
Proposition 4.16, Proposition 4.17, Proposition 4.18, Proposition 4.19, Proposition 4.20
and Proposition 4.21 that ER1 is strictly “better” than these six formulas.

Next, for the column of “TS2 on PG1” in Table IV, the relevant sets for ER1 are as
scenario B; while for Wong3, the relevant sets are as scenario C. For ER1 and Wong3,
the sizes of their SR

B (=1) are the same, but their SR
F are different. If we adopt the

ORIGINAL ORDER tie-breaking scheme, the faulty statement (s5) would be ranked
the second highest in ER1 and the third highest in Wong3. Therefore, the EXAM score
of ER1 is less than the EXAM score of Wong3. It follows from Proposition 4.23 that
ER1 is strictly “better” than Wong3.

Immediately after all the propositions between Proposition 4.6 and Proposition 4.24,
Ochiai, ER2, ER3, ER4, AMPLE2, Kulczynski2, M2, ER6, Arithmetic Mean, Cohen,
Fleiss and Wong3 cannot be maximal. As a consequence, the only remaining candidates
for maximal formulas are ER1 and ER5, which are in fact the maximal formulas as
stated in the following proposition.

PROPOSITION 4.25. ER1 and ER5 are the maximal formulas.

PROOF. First, we will prove that ER5 → ER1 does not hold. Refer to the column of
“TS3 on PG1” in Table IV, the relevant sets for ER1 are as scenario B; while for ER5,
the relevant sets are as scenario D. Though the size of SR

B (=1) for ER1 is larger than
the corresponding size (=0) for ER5, the SR

F for these two equivalent groups are differ-
ent. If we adopt the ORIGINAL ORDER tie-breaking scheme, the faulty statement (s5)
would be ranked higher in ER1 (the second highest) than in ER5 (the third highest),
that is, the EXAM score of ER1 is less than the EXAM score of ER5. Thus, ER5 is not
“better” (“→”) than ER1.

Secondly, we will prove that ER1 → ER5 does not hold. Refer to the column of “TS3

on PG2” in Table IV, the relevant sets for ER1 are as scenario E; while for ER5, they
are as scenario F. As seen from the table, the size of SR

B (=3) for ER1 is larger than
the corresponding size (=0) for ER5. If we adopt the ORIGINAL ORDER tie-breaking
scheme, the faulty statement (s5) would be ranked the fourth highest in ER1 and the
third highest in ER5. In other words, the EXAM score of ER1 is greater than the EXAM
score of ER5. Thus, ER1 is not “better” (“→”) than ER5.

The above examples demonstrate that neither ER1 → ER5 nor ER5 → ER1 holds.
Following after all the propositions between Proposition 4.3 and Proposition 4.24, we
can conclude that ER1 and ER5 are the only maximal formulas among all the 30 in-
vestigated formulas.

5. RELATED WORK

The performance of various risk evaluation formulas in SBFL has been compared
through empirical studies and theoretical analyses.

Abreu et al. conducted empirical performance comparison among different risk eval-
uation formulas [Abreu et al. 2006; 2007; Abreu et al. 2009]. They first introduced
formula Ochiai from the discipline of molecular biology into SBFL. Their experimental
results showed that Ochiai outperformed Jaccard (ER2), and Jaccard (ER2) outper-
formed Tarantula (ER3). Their observations are consistent with our theoretical results
as reported in Figure 3(a). In order to find out the reason why such observations occur,
they analyzed how different elements in vector Ai would affect the returned values of
these formulas. However, their analysis was unable to reveal the underlying rationale.
They also discovered that the original version of AMPLE2 performed the worst in most

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:33

cases. This observation is understandable because the original version is against the
intuition of SBFL formulas, as discussed in Section 4.1. Actually, their results were
also validated by other empirical studies. For example, Santelices et al. [2009] have
reported that Ochiai outperformed Tarantula in their earlier experiments. But they
neither described the performance relations between other formulas as Abreu et al.
did, nor gave an analysis for their observation.

In [Lee et al. 2009b] and [Naish et al. 2011], apart from the theoretical analyses,
comprehensive experimental studies were also included to compare the average EXAM
scores of some formulas, using the widely adopted Siemens Suite and Space as bench-
marks. Their experimental results for executable codes and single-fault scenario are
consistent with our conclusions. First, formulas in each of the six equivalent groups
(ER1 to ER6) gave identical average EXAM scores in their experiments. Secondly, their
experimental results are consistent with our results depicted in Figures 3 and 4.

Despite such a comprehensive experimental study, Naish et. al were still unable to
reveal the underlying rationale for all of their observations. Moreover, their analysis
by its nature can never deliver a full picture. For example, in their experiments, ER1
was observed to outperform all the other investigated formulas, including ER5. How-
ever, their experimental results did not demonstrate that there is no “better” (“→”)
relation between these two groups of formulas, as stated in Proposition 4.25. A similar
problem existed in Wong et al.’s study, in which they have reported that by using the
same tie-breaking scheme of either BEST or WORST, Wong3 outperformed Tarantula
[Wong et al. 2007]. Actually, our framework can show that neither Wong3 is “better”
(“→”) than Tarantula, nor Tarantula is “better” (“→”) than Wong3. However, their ex-
perimental results are still consistent with our theoretical results.

Nevertheless, there exist some empirical results showing difference between Taran-
tula and CBI [Yu et al. 2008; Jiang et al. 2009] of the same equivalent group (ER3)
in our analysis. Such discrepancy is due to the use of different tie-breaking schemes
on Tarantula and CBI. In the study by Yu et al. [2008], there were two tie-breaking
schemes applied together on Tarantula. The first one was an additional metric, namely
confidence, computed as follows:

confidence=max(
aef

aef + anf
,

aep
aep + anp

)

The second one was effectively the “WORST” tie-breaking scheme in terms of the
EXAM score. For statements with the same risk value and the same confidence value,
the sum of the number of these tied statement and the number of statements ranked
before them were assigned as the ranking of these statements. While for CBI, only
the “WORST” tie-breaking scheme was applied. Similarly, in the study by Jiang et al.
[2009], Tarantula adopted both the confidence and the “BEST” tie-breaking schemes;
while CBI only adopted the “BEST” tie-breaking scheme. In other words, their results
and our results are not comparable because of the different context.

Due to the limitation of empirical study, some theoretical studies were conducted for
the performance comparison. Lee et al. [2009a] have proved that formulas Tarantula
and qe yield identical ranking lists. In a follow-up study, Naish et al. [2011] conducted a
more comprehensive investigation, where more equivalence relations were identified,
using the same definition of equivalence as Lee et al. [2009a]. However, their equiva-
lence relation is the most strict type of equivalence that should be relaxed to cater for
more realistic scenarios. Naish et al. [2011] also investigated the non-equivalence re-
lations, but using a hybrid approach, with a model program and a group of multisets of
execution paths. However, their performance measurement was not commonly adopted
by the SBFL community, and their analysis still involved sampling and simulation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 X. Xie et al.

It should be noted that both the studies mentioned above and our theoretical anal-
ysis are focused on risk evaluation formulas that use the same information, namely
Ai. Recently, some extended SBFL techniques have emerged, which integrate the ba-
sic procedure with other models or employ additional information, such as the SBFL
with causal inference using program dependence graphs by Baah et al. [2010], some
weighted SBFL techniques using additional information from either passed test case
or failed test case as weighting factors by Bandyopadhyay and Ghosh [2011] and by
Naish et al. [2009], etc. However, no matter how SBFL is extended, selecting a well-
performed risk evaluation formula is always the most fundamental and essential task.
Intuitively speaking, a formula with better performance in the basic version of SBFL
should also be preferred in the extended versions. Such an intuition is conceived by
some extended SBFL techniques. For example, both Baah et al. [2010] and Bandy-
opadhyay and Ghosh [2011] chose formula Ochiai in their studies, because of its em-
pirically good performance. Naish et al. [2009] have applied their weighting factors
in different formulas, but interestingly, the performance comparison results of these
formulas with weighting factors are consistent with the results without weighting fac-
tors. Therefore, our framework that provides a definite solution to the choice of the
risk evaluation formula for SBFL, can help in both the basic version of SBFL and its
extended versions.

6. DISCUSSION

As stated in Section 4.2, our framework is based on several assumptions, which are
discussed in details in this section.

We have assumed that the programs under debugging have testing oracle and the
faults are deterministic ones. This is reasonable because only with these assumptions,
can deterministic testing results of pass or fail be obtained, which are required for risk
evaluation.

We have excluded the omission faults, because SBFL is designed to assign risk val-
ues to the existent statements. Some previous SBFL experimental studies handled
the omission faults by considering the preceding or succeeding statement of the miss-
ing statement as the “faulty statement”. However, this approach is controversial. Fur-
thermore, the “preceding or succeeding” statement may have different interpretations,
such as “the line order of source code” or “the order according to the control-flow graph”.
And there is no consensus on the interpretation. Thus in order to avoid unnecessary
noises, we leave the omission faults out of this study.

Furthermore, we have imposed a constraint on the test suite, namely, 100% state-
ment coverage. It is true that this constraint is not easily satisfied in practice. However,
whether a test suite actually achieves 100% statement coverage does not really affect
the applicability of our framework. The rationale is that if a statement is never cov-
ered by any test case in the given test suite, it cannot be the faulty statement that trig-
gers the observed failures. Therefore, in practice, if a test suite does not achieve 100%
statement coverage, we should first exclude those uncovered statements and only fo-
cus on the covered portion of program for the debugging purpose, in which the 100%
statement coverage is then satisfied, and thus our framework is applicable. For those
uncovered statements, it is reasonable to rank them at the bottom of the ranking list
[Xie et al. 2010]. As a matter of fact, in many previous empirical studies, the Siemens
Suite and Space were adopted as benchmarks. These programs have well developed
test suites, in which at least 30 test cases can exercise each executable statement or
branch in the program [SIR 2005]. Therefore, these empirical studies did not encounter
such a 100% coverage problem.

Besides, we have the assumption that the test suite contains at least one failed
test case and one passed test case. Such an assumption is reasonable and practically

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:35

feasible. First, it is widely accepted that at least one failed test case is required for
debugging. Secondly, except ER5, all the other investigated formulas have the pre-
requisite that there exists at least one passed test case, though this prerequisite was
never explicitly stated. Without any passed test cases, such formulas either become
totally undefined (such as Tarantula), or partially undefined (such as Scott), or become
equivalent to ER5 (such as Naish1), or even become unable to function properly (such
as qe where all statements are assigned with the same risk value). As compared with
the failed test cases that may be difficult to get, the passed test cases are much easier
to find and normally exist. Even if the current test suite does not contain any passed
test case, after a few rounds of regression testing, some failed test cases would have
become passed ones. In other words, this assumption is realistic and is relatively easy
to be achieved in practice.

In this study, we assume that debuggers examine the ranking list from the top to the
bottom, because we use the ranking of faulty statement as the measurement to deter-
mine the performance of the risk evaluation formulas in SBFL. Without any assump-
tion about the order that the debuggers would inspect the ranking list, comparing the
ranking of the faulty statement between different formulas will become meaningless.
Furthermore, we have the assumption of “perfect bug detection”. This study focuses
on the performance of the risk evaluation formulas, rather than the performance of
an entire debugging process. And the effectiveness of bug detection usually involves
many complicated issues, such as the complexity of the fault, the debugger’s experi-
ence, etc. Thus, without any further information, the only available and also reason-
able assumption is “perfect bug detection”. Therefore, though this assumption is not
normally satisfied in practice, it has actually been accepted by the SBFL community,
because it provides a fair comparison among different SBFL techniques [Parnin and
Orso 2011]. However, it should be noted that as an automatic debugging technique,
SBFL only provides assistant information to the debuggers and its ranking list is not
the sole determinant of the effectiveness in the entire debugging process. To what ex-
tent can debuggers benefit from the ranking list depends on many factors, including
the effectiveness of the adopted SBFL technique, the complexity of the fault, the de-
bugger’s experience, the pattern that the debugger navigates the given ranking list,
etc. as observed by Parnin and Orso [2011]. For example, they have found that expert
debuggers received a much higher benefit from using Tarantula, and that debuggers
do not necessarily examine each statement one by one, according to the given ranking
list. However, these factors are out of the scope of this study.

In addition to the assumptions discussed above, our study has assumed the single-
fault scenario. Even though we have only provided a theoretical analysis for single-
fault scenario, we believe that our conclusions are still meaningful and useful in
multiple-fault cases. Generally speaking, in practice where the quantity of the faults
is unknown, there are two debugging approaches, namely “sequential debugging” and
“parallel debugging”. The sequential debugging approach iteratively fixes a localized
fault and then conducts regression testing to localize the next fault [Jones et al. 2007];
while the parallel debugging approach tries to locate faults simultaneously, using the
technique of “fault-focusing clustering” [Dickinson et al. 2001; Podgurski et al. 2003;
Liu and Han 2006; Zheng et al. 2006; Jones et al. 2007].

DiGiuseppe and Jones [2011] have recently studied the impact of multiple-fault on
SBFL and found that in terms of localizing at least one single fault, SBFL techniques
remain to be effective as the quantity of the faults increases, even in the presence of
fault-localization interference (that is how different faults interfere with each others’
localizability). Thus, when adopting the sequential debugging approach, the perfor-
mance of the SBFL techniques is not affected significantly by the quantity of faults.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 X. Xie et al.

Therefore, regardless of the number of faults, it is still intuitively attractive to choose
risk evaluation formulas with better performance under the single-fault scenario.

On the other hand, when adopting the parallel debugging approach, test cases are
first clustered into several specialized test suites based on various execution infor-
mation, and each of the test suites targets an individual fault. As such, the fault-
localization interference among multiple faults can be reduced [Liu and Han 2006;
Zheng et al. 2006; Jones et al. 2007]. In practice, each specialized test suite is dis-
patched to a particular debugger, who is supposed to focus on the corresponding single
fault. Therefore, before applying our theoretical framework to the parallel debugging
approach, we just need to conduct an initial clustering process on the test suite. Af-
ter such an initial pre-processing, a debugging task for multiple-fault is divided into
several parallel sub-tasks, each for a single fault and a debugger. As a consequence,
for each debugger, his/her sub-task can be considered as a single-fault scenario where
the results of this paper can be applied. Since most clustering techniques use heuristic
methods, they cannot guarantee to eliminate all fault-localization interference. Thus,
it is worthwhile to further study how the noises brought by the fault-focusing cluster-
ing techniques would affect our theoretical framework.

7. CONCLUSIONS

With the emergence of more and more risk evaluation formulas, it is important to know
which formulas should be used when SBFL is applied. Most of the related studies have
adopted an empirical approach, and hence the reported results are strongly dependent
on many factors, such as object programs, test suites, types of fault, etc. Though re-
searchers used various approaches to control the threats to validity in order to provide
a more fair comparison of various formulas, the empirical investigations can hardly be
considered as sufficiently comprehensive due to the huge number of possible combi-
nations of various factors in SBFL. On the other hand, a theoretical approach has no
such limitations, and hence more reliable and robust conclusions can be obtained.

In this paper, we have developed an innovative framework for theoretical analysis,
using the notion of subset. Different from previous theoretical studies, we propose two
types of relation, namely, the “equivalent” (“↔”) relation and the “better” (“→”) rela-
tion. Our definition of “equivalent” relation that requires same ranking of sf , is more
intuitively appealing and general than that of Naish et al. requiring identical rank-
ing list. Though identical ranking lists guarantee the same rankings for faulty state-
ments regardless of the number of faulty statements, it may treat some formulas as
non-equivalent even if they always yield the same rankings for the faulty statements.
Thus, their definition of equivalence does not properly reflect a more realistic scenario.

Our framework identifies relations between different formulas based on a simple in-
tuition that the number of statements with risk values higher than the risk value of
the faulty statement, predominantly determines the ranking of the faulty statement.
Our framework divides all program statements into three disjoint sets with risk val-
ues higher than, equal to and lower than the risk value of the faulty statement, and
compares the sizes of these sets for different formulas using the notion of subset.

We apply our framework to the formulas investigated by Naish et al. [2011], but
exclude some formulas with the justifications given in Section 4.1. Among the 30 in-
vestigated formulas in our study, we have proved that for single-fault scenario, there
are five maximal formulas, namely, Naish1, Naish2, Wong1, Russell & Rao and Bi-
nary, which are grouped into two equivalent groups, ER1 and ER5. In other words,
when we apply SBFL, we only need to consider risk evaluation formulas from these
two maximal groups. By inspecting these two maximal groups, the intuition that a
statement executed by more failed test cases has higher possibility to be faulty, is ob-
served to have the most significant impact on the effectiveness of a risk evaluation

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:37

formula. These two groups of formulas use aef as either their sole (ER5) or primary
(ER1) determinant in ranking the risk values. Apart from aef , ER1 also utilizes aep as
its secondary determinant, which actually follows another intuition that a statement
executed by less passed test cases has higher possibility to be faulty. Though such an
additional information does not help to guarantee that ER1 always outperforms ER5,
Naish et al. [2011] have observed from the experimental data that ER1 performed
better than ER5 on average.

Overall, our experience of this study shows that the theoretical analysis and the
empirical analysis are both essential and complementary to each other in software
analysis and testing. The previously extensive empirical investigations have provided
great amount of experimental data to show that some risk evaluation formulas appear
to perform better than others. These experimental data have convinced us that it is not
a coincidence but the existence of a definite relation between some pairs of risk evalu-
ation formulas, and hence have motivated us to adopt a theoretical approach to search
for the underlying rationale. This has led to the discovery of the maximal formulas
in this study. Generally speaking, an empirical study is useful to expose or highlight
some interesting phenomena or trends, which may conjecture a generalization that
needs to be verified by a theoretical analysis. On the other hand, a theoretical study
normally aims at finding a definite answer to a question. Even if a problem cannot be
completely solved by a theoretical approach, problems may be highlighted during the
analysis, which are worthwhile and critical to be attempted by an empirical approach.
Actually, one interesting problem that has been highlighted by this study is to compare
the performance of the two maximal groups of equivalent formulas using an empirical
approach.

ACKNOWLEDGMENTS

This project is partially supported by an Australian Research Council Discovery Project (DP120104773) and
the National Natural Science Foundation of China (90818027, 61170071).

REFERENCES

ABREU, R., ZOETEWEIJ, P., GOLSTEIJN, R., AND VAN GEMUND, A. J. C. 2009. A practical evaluation of
spectrum-based fault localization. Journal of Systems and Software 82, 11, 1780–1792.

ABREU, R., ZOETEWEIJ, P., AND VAN GEMUND, A. J. C. 2006. An evaluation of similarity coefficients for
software fault localization. In Proceedings of the 12th Pacific Rim International Symposium on Depend-
able Computing. Riverside, USA, 39–46.

ABREU, R., ZOETEWEIJ, P., AND VAN GEMUND, A. J. C. 2007. On the accuracy of spectrum-based fault
localization. In Proceedings of Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION. Windsor, UK, 89–98.

AGRAWAL, H., HORGAN, J. R., LONDON, S., AND WONG, W. E. 1995. Fault localization using execution
slices and dataflow tests. In Proceedings of the 6th International Symposium on Software Reliability
Engineering. Toulouse, France, 143–151.

BAAH, G. K., PODGURSKI, A., AND HARROLD, M. J. 2010. Causal inference for statistical fault localization.
In Proceedings of the International Symposium on Software Testing and Analysis. Trento, Italy, 73–84.

BANDYOPADHYAY, A. AND GHOSH, S. 2011. Proximity based weighting of test cases to improve spectrum
based fault localization. In Proceedings of the 26th IEEE/ACM International Conference on Automated
Software Engineering. Lawrence, USA, 420–423.

CHEN, M., KICIMAN, E., FRATKIN, E., FOX, A., AND BREWER, E. 2002. Pinpoint: problem determination
in large, dynamic internet services. In Proceedings of the 32th IEEE/IFIP International Conference on
Dependable Systems and Networks. Washington DC, USA, 595–604.

COLLOFELLO, J. S. AND WOODFIELD, S. N. 1989. Evaluating the effectiveness of reliability-assurance tech-
niques. Journal of Systems and Software 9, 3, 191–195.

DALLMEIER, V., LINDIG, C., AND ZELLER, A. 2005. Lightweight defect localization for java. In Proceedings
of the 19th European Conference on Object-Oriented Programming. Scotland, UK, 528–550.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 X. Xie et al.

DICKINSON, W., LEON, D., AND PODGURSKI, A. 2001. Finding failures by cluster analysis of execution
profiles. In Proceedings of the 23rd International Conference on Software Engineering. Toronto, Ontario,
Canada, 339–348.

DIGIUSEPPE, N. AND JONES, J. A. 2011. On the influence of multiple faults on coverage-based fault lo-
calization. In Proceedings of the International Symposium on Software Testing and Analysis. Toronto,
Canada, 199–209.

HARROLD, M. J., ROTHERMEL, G., SAYRE, K., WU, R., AND YI, L. 2000. An empirical investigation of
the relationship between spectra differences and regression faults. Software Testing Verification and
Reliability 10, 3, 171–194.

HARROLD, M. J., ROTHERMEL, G., WU, R., AND YI, L. 1998. An empirical investigation of program spectra.
In Proceedings of the 1st ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering. Montreal, Canada, 83–90.

JIANG, B., ZHANG, Z., TSE, T. H., AND CHEN, T. Y. 2009. How well do test case prioritization techniques
support statistical fault localization. In Proceedings of the 33rd Annual International Conference on
Computer Software and Applications. Vol. 1. Seattle, USA, 99–106.

JONES, J. A., BOWRING, J. F., AND HARROLD, M. J. 2007. Debugging in parallel. In Proceedings of the
International Symposium on Software Testing and Analysis. New York, USA, 16–26.

JONES, J. A. AND HARROLD, M. J. 2005. Empirical evaluation of the tarantula automatic fault-localization
technique. In Proceedings of the 20th IEEE/ACM International Conference on Automated Software En-
gineering. Long Beach, USA, 273–282.

JONES, J. A., HARROLD, M. J., AND STASKO, J. 2002. Visualization of test information to assist fault
localization. In Proceedings of the 24th International Conference on Software Engineering. Florida, USA,
467–477.

LEE, H. J., NAISH, L., AND RAMAMOHANARAO, K. 2009a. Study of the relationship of bug consistency with
respect to performance of spectra metrics. In Proceedings of the 2nd IEEE International Conference on
Computer Science and Information Technology. Beijing, China, 501–508.

LEE, H. J., NAISH, L., AND RAMAMOHANARAO, K. 2009b. The effectiveness of using non redundant test
cases with program spectra for bug localization. In Proceedings of the 2nd IEEE International Confer-
ence on Computer Science and Information Technology. Beijing, China, 127–134.

LIBLIT, B. R. 2004. Cooperative bug isolation. Ph.D. thesis, University of California, USA.

LIBLIT, B. R., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN, M. I. 2005. Scalable statistical bug
isolation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. Chicago, USA, 15–26.

LIU, C., FEI, L., YAN, X., HAN, J., AND MIDKIFF, S. 2006. Statistical debugging: a hypothesis testing-based
approach. IEEE Transactions on Software Engineering 32, 10, 831–848.

LIU, C. AND HAN, J. 2006. Failure proximity: a fault localization-based approach. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineering. New York, USA,
46–56.

NAISH, L., LEE, H. J., AND RAMAMOHANARAO, K. 2009. Spectral debugging with weights and incremental
ranking. In Proceedings of the 16th Asia-Pacific Software Engineering Conference. Penang, Malaysia,
168–175.

NAISH, L., LEE, H. J., AND RAMAMOHANARAO, K. 2011. A model for spectra-based software diagnosis.
ACM Transactions on Software Engineering and Methodology 20, 3, 11:1–11:32.

PARNIN, C. AND ORSO, A. 2011. Are automated debugging techniques actually helping programmers? In
Proceedings of the International Symposium on Software Testing and Analysis. Toronto, Canada, 199–
209.

PODGURSKI, A., LEON, D., FRANCIS, P., MASRI, W., MINCH, M., SUN, J., AND WANG, B. 2003. Automated
support for classifying software failure reports. In Proceedings of the 25th International Conference on
Software Engineering. Portland, Oregon, USA, 465–475.

REPS, T., BALL, T., DAS, M., AND LARUS, J. 1997. The use of program profiling for software maintenance
with applications to the year 2000 problem. In Proceedings of the 6th European Software Engineering
Conference held jointly with the 5th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. Number 6. Zurich, Switzerland, 432–449.

SANTELICES, R., JONES, J. A., YU, Y., AND HARROLD, M. J. 2009. Lightweight fault-localization using
multiple coverage types. In Proceedings of the 31st International Conference on Software Engineering.
Vancouver, Canada, 56–66.

SIR. 2005. http://sir.unl.edu/php/index.php.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization A:39

WONG, W. E., DEBROY, V., AND CHOI, B. 2010. A family of code coverage-based heuristics for effective fault
localization. Journal of Systems and Software 83, 2, 188–208.

WONG, W. E. AND QI, Y. 2006. Effective program debugging based on execution slices and inter-block data
dependency. Journal of Systems and Software 79, 7, 891–903.

WONG, W. E., QI, Y., ZHAO, L., AND CAI, K. Y. 2007. Effective fault localization using code coverage.
In Proceedings of the 31st Annual International Conference on Computer Software and Applications.
Beijing, China, 449–456.

WONG, W. E., WEI, T., QI, Y., AND ZHAO, L. 2008. A crosstab-based statistical method for effective fault
localization. In Proceedings of the 1st International Conference on Software Testing, Verification and
Validation. Lillehammer, Norway, 42–51.

XIE, X. Y. 2012. On the analysis of spectrum-based fault localization. Ph.D. thesis, Swinburne University of
Technology, Australia.

XIE, X. Y., CHEN, T. Y., AND XU, B. W. 2010. Isolating suspiciousness from spectrum-based fault localization
techniques. In Proceedings of the 10th International Conference on Quality Software. Zhangjiajie, China,
385–392.

XIE, X. Y., WONG, W. E., CHEN, T. Y., AND XU, B. W. 2011. Spectrum-based fault localization: testing ora-
cles are no longer mandatory. In Proceedings of the 11th International Conference on Quality Software.
Madrid, Spain, 1–10.

YU, Y., JONES, J. A., AND HARROLD, M. J. 2008. An empirical study of the effects of test-suite reduction on
fault localization. In Proceedings of the 30th International Conference on Software Engineering. Leipzig,
Germany, 201–210.

ZELLER, A. 2002. Isolating cause-effect chains from computer programs. In Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering. ACM SIGSOFT Software Engineering
Notes, 1–10.

ZHENG, A. X., JORDAN, M. I., LIBLIT, B., NAIK, M., AND AIKEN, A. 2006. Statistical debugging: simulta-
neous identification of multiple bugs. In Proceedings of the 23rd International Conference on Machine
Learning. New York, USA, 1105–1112.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

